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Abstract

Since the introduction of multimedia services to CDMA systems, many researchers have been working on the maximization
of the aggregate capacity of the reverse link. This problem looks for the optimal set of transmission powers of the stations
subject to a set of constraints. One of the research directions in this field is to devise a practically realistic set of constraints
and then to propose an algorithm for solving the resulting problem. Through a unified approach, introduced recently by the
authors, a more general investigation of the problem, equipped with a wide range of constraints, is possible. Here, we go
further and propose an approximation to reshape the objective function into a more conveniently workable one. Then, we
analyze the three available formulations of the problem and show that integrating this approximation into the available algo-
rithms has the benefit of reducing the computational cost. The paper includes the mathematics involved in the approximation
and its integration into the algorithms. Also, we analyze examples to demonstrate the achievements of the proposed method.
� 2007 Elsevier GmbH. All rights reserved.
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1. Introduction

Analysis of the information-theoretic capacity of the re-
verse link in a CDMA system was first addressed in [1].
That work, plus other earlier ideas for multi-user networks
[2,3], are surveyed in [4]. These works focus on the set of all
capacities based on multi-user detection techniques. More
recent works analyze the aggregate reverse link capacity, us-
ing matched filters [5–7].

A challenge in modeling these systems is to suggest a
proper mapping between the signal to noise ratio (SNR)
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and the throughput. This mapping would be determined by
the coding [7], when a sub-optimal coding strategy is used.
Nevertheless, the assumption of Shannon capacity is theo-
retically feasible because of the existence of coding strate-
gies such as Turbo Coding [8].

Here, we first introduce the formal formulation of the
problem. Then, different approaches to the problem will be
discussed. Assume that M stations are given in a cell, where
the ith station is transmitting at power pi ∈ [0, pmax]. The
path gain from this station to the base equals gi and we
assume that g1 � · · · �gM . Now, the ith station’s SNR is
modeled as

�i = pigi

I +∑M
j=1,j �=ipjgj

. (1)

Note that, here, we are looking at the chip level and thus
the signal to interference ratio (SIR) is equal to the SNR.
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Using the Shannon theorem, the relative capacity of the
ith station is well approximated as [4],

Ci = log2(1 + �i ). (2)

This capacity is called relative, because we have ignored
the fixed transmission bandwidth, B. Now, the problem is to
maximize,

C =
M∑
i=1

Ci . (3)

To make the system practically applicable, the aggregate
power received by the base station must be below a prese-
lected value,

M∑
i=1

pigi �Pmax. (4)

Also, it is necessary to have a minimum guaranteed bound
on the SNR of the single stations, �i ��. This formulation is
adopted from [8] and will be called the classical single-cell
(CSC) problem.

Oh and Soong [8] worked on CSC and showed that rather
than searching for the solution in [0, pmax]M , the search
can be conducted in a set of M one-dimensional sub-spaces.
For that, they utilized a numerical search. This problem was
revisited in [9] using a more general framework. There, the
authors proved that the actual search space can be further
limited to a set of less than 2M points, for which closed
forms were given. The proposed algorithm was then shown
to demand O(M2) flops, more than nine times less than the
previous approach.

Analysis of CSC reveals that almost always there is one
station in the cell which transmits at a capacity about 50
times as mush as the others [6,7,10]. To deal with this un-
fair behavior, and using the mathematical approach intro-
duced in [9], a maximum capacity constraint, as Ci ��,
is added to the problem, resulting in the new single-cell
(NSC) problem [10]. The algorithm proposed in [10] solves
the NSC for a M-station cell in O(M3) flops. The essen-
tial structure of the NSC algorithm is similar to that of the
CSC, except for the fact that the definition of the intervals
and the structure of the solution are different in the two
cases.

In order to enhance the results of NSC, a new constraint
was added to the problem, resulting in N+SC [11]. This was
carried out by defining the capacity share of the ith station
as C̃i = Ci/C and then adding the inequality C̃i �(M�)−1

to the constraints. It was shown that the solution to N+SC
either comes from a NSC or from a different version of it,
called N′SC. In either case, the algorithm works in known
boundaries and checks at most M(M−1) possible solutions.
N+SC, which demands O(M3) flops, uses an approximation
for C̃i .

In this paper, we propose a new set of approximations to
simplify the three problems. This simplification results in

simpler proofs for the theorems presented in [9–11]. Also,
we show that these approximations enable us to reduce the
computational cost of each algorithm by one in powers of M.
Using the superscript a for the new algorithms, we propose
algorithms CSCa , NSCa , and N+SCa , for solving the prob-
lems CSC, NSC, and N+SC in O(M), O(M2), and O(M2),
respectively.

2. Proposed method

2.1. Mathematical method

Using the linear transformation,

xi = pigi

I
(5)

the goal function reduces to maximizing,

C(�x) = (1 +∑M
j=1xj )

M∏M
i=1(1 +∑M

j=1,j �=ixj )
. (6)

This relationship can be derived by substituting (5) in (1)
and the using (2). Similarly, the constraints can be written
as,

xi ∈ [0, li], li = pmaxgi

I
, (7)

1 − 2−� = �� xi

1 +∑M
j=1xj

�� = �

� + 1
, ∀i, (8)

M∑
i=1

xi �Xmax = Pmax

I
. (9)

Here, setting � = ∞ and � = 0 gives CSC. Also, setting
� = 0 gives NSC and no restriction leads to N+SC.

It is shown that investigating the behavior of the problem
in the set of hyperplanes defined as

∑M
i=1xi = T is benefi-

ciary [9]. In these hyperplanes, the bound for the aggregate
transmission power changes into T �Xmax. Also, the two
other constraints add up into,

xi ∈ [�(1 + T ), min{li , �(1 + T )}]. (10)

It is proved that [9], if we can limit the search space
to xi ∈ [bi, Bi], where b and Bi’s are positive values and
Bi’s are sorted in a descending fashion, then the maximum
of C(�x) occurs when �x = (B1, . . . , Bk−1, xk, b, . . . , b) for
values of k and xk yet to be found. This property is called the
boundary theorem and is a result of another theorem which
states that the distance between xi’s should be as large as
possible.

2.2. Typical algorithm

The three algorithms of CSC, NSC, N+SC, and also the
internal algorithm N′SC, have a fairly similar structure. In-
dependent analysis of each problem shows that there is a



Author's personal copy

110 A. Abadpour et al. / Int. J. Electron. Commun. (AEÜ) 63 (2009) 108–115

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

x

f(
x
)

log2(1+x/(1−x))

x(1+x)/ln2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

2

4

6

8

10

12

x

E
rr

o
r 

(%
)

Fig. 1. Investigating the properness of the approximation given in (12): (a) the two sides; and (b) relative error. NSC and N+SC work in
the shaded area.

value of k, or a pair of values j and k, for which the vector
�x is linearly calculated based on xk . Then, the problem is
to find the best k, or k and j, and then spot the best xk . For
each problem, it is independently proved that having fixed
k, and also j if applicable, xk should accept either the small-
est or the largest value mandated by the boundaries. This
way, in each algorithm, the two functions � and � are de-
rived, both of which depend on k, and j if applicable, and
system parameters. Then, the task is to iterate over all val-
ues of k, and j if applicable, and to set xk = � and xk = �
and gather all possible results. Then, the best solution is
selected.

2.3. Approximation

Except for CSC, we have �i ∈ [�, 2� − 1]. To reach to
an appropriate approximate form, we note that for nominal
values of � = −30 dB and � = 0.3, approximating ln(1 + �i )

with �i carries less than 10% error. Hence, we write,

Ci 	 1

ln 2
�i = 1

ln 2

[
xi/(1 + T )

1 − xi/(1 + T )

]

	 1

ln 2

[
xi

1 + T

(
1 + xi

1 + T

)]
. (11)

Here, the approximation,

log2

(
1 + x

1 − x

)
	 1

ln 2
x(1 + x). (12)

Fig 1a shows that for the cases of NSC and N+SC, the
shaded area is being used, the approximation presented in
(12), results in less than 8% error. Also, for these two prob-
lems, the actual value is always less than the approximated

value. However, for highly impartial CSC solutions, for
which x may go over 0.7, the approximation may fall below
the actual value. Nevertheless, the error is always less than
10%.

Using (11) we have,

C(�x) 	 1

ln 2

(
1 +

∑M
i=1x

2
i

(1 + T )2
− 1

1 + T

)
, (13)

which shows that, for the fixed T, the maximum value of
C(�x) happens when

∑M
i=1x

2
i is maximum. Assuming that

all xi’s are fixed, except for xj and xk , and that xj + xk =
T −∑M

i=1,i /∈{j,k}xi = S, the search reduces to maximizing

x2
j + x2

k . Because of 2(x2
j + x2

k ) = (xj + xk)
2 + (xj − xk)

2,
the maximum happens when |xj − xk| is maximum. This is
identical to the theorem proved in [9].

Note that the approximation given in (13) is also helpful
in faster calculation of C(�x). As described in Section 2.2, the
typical algorithm includes finding bounds for xk for different
values of k, and j if applicable, and then finding the aggregate
relative capacity at those bounds. Using the approximation
given here, the calculations can be performed faster. Hence,
if the approximate algorithm does not fail in finding the best
k, and j if applicable, the values of p1, . . . , pM would be
exact.

The actual worry here is that the approximation may de-
viate the algorithm from finding the best k, or j, and hence
may produce a wrong result. Here, we assume that the
approximation does not change two values of C for two dif-
ferent sets of pi’s in a way that the better solution becomes
worse. Through experimental analysis it will be empirically
shown that the approximate algorithm does give the exact
solution, with a negligible probability of erratic behavior.



Author's personal copy

A. Abadpour et al. / Int. J. Electron. Commun. (AEÜ) 63 (2009) 108–115 111

Note that, after pi’s are found, C will be calculated again,
using the exact calculation, in order to yield the exact
result.

2.4. Approximate algorithms

Lemma I. Assume that for given values of a, b and c > 0,
the function,

f (x) = x2 + ax + b

(x + c)2
, (14)

is given. For any interval on the positive side, say [�, �], the
maximum value of f (x) in [�, �] is either f (�) or f (�).

Proof. The lemma can be proved by analyzing the behavior
of f (x) and f ′(x) at the boundaries. �

Using this lemma, the three approximate algorithms are
presented below.

2.4.1. CSCa

According to the CSC results, we have [9],

�x = (l1, . . . , lk−1, xk, �(1 + T ), . . . ,�(1 + T )), (15)

resulting in,

C(�x) 	 1

ln 2

(
	2 x2

k − (1/	)xk + L − (1/	)(l + 1)

(xk + l + 1)2

+1 + (M − k)�2

)
. (16)

Here,

L =
k−1∑
i=1

l2
i , (17)

T = xk + l + 1

	
, (18)

l =
k−1∑
i=1

li , (19)

	 = 1 − (M − k)�. (20)

Now, the problem of finding the best xk translates into
finding the maximum of f (x), as defined in Lemma I, where,

a = − 1

	
, b = L − l + 1

	
, c = l + 1. (21)

Here, the search is performed for all xk’s which satisfy [9],

xk � min

⎧⎨
⎩

lk,

	 min

{
Xmax + 1
1

�
lM

}
− (l + 1)

⎫⎬
⎭ , (22)

xk � �

	 − �
(l + 1). (23)

Hence, using Lemma I, xk must accept one of the bounds
given in (22) and (23). Using this method, the computational
cost of CSCa becomes 36M + 6 flops, compared to the
8M2 + 20M + 10-flop cost of CSC [9].

2.4.2. NSCa

Analysis of NSC shows that [10],

�x = (�(1 + T ), . . . , �(1 + T ), lj+1, . . . , lk−1xk ,

�(1 + T ), . . . , �(1 + T )), (24)

for which,

C(�x) 	 1

ln 2

(
	2 x2

k − (1/	)xk + L − (1/	)(l + 1)

(xk + l + 1)2

+1 + (M − k)�2 + j�2

)
. (25)

Here,

L =
k−1∑

i=j+1

l2
i , (26)

l =
k−1∑

i=j+1

li , (27)

T = xk + l + 1

	
, (28)

	 = 1 − (j� + (M − k)�). (29)

Now, using Lemma I, xk should accept one of the limits
of [10],

xk � min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lk,
�

	 − �
(L + 1), 	 > �

	 min

⎧⎪⎪⎨
⎪⎪⎩

1

�
lj , j �= 0

1

�
lM

Xmax + 1

⎫⎪⎪⎬
⎪⎪⎭− (L + 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (30)

xk � max

⎧⎨
⎩

	

�
lj+1 − (L + 1), k > j + 1
�

	 − �
(L + 1)

⎫⎬
⎭ . (31)

Here, [P ] is one if the condition P holds and zero otherwise.
Using the approximate closed form for C(�x) given in (25),
the computational cost of NSCa reduces to 23M2−21M+14
flops, compared to the 16

3 M3 + 55
3 M2 − 23M + 6-flop cost

of NSC [10].
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2.4.3. N+SCa

To analyze N+SCa , we first have to analyze N′SCa . In
N′SC we have [11],

�x =
(

1

M�
T , . . . ,

1

M�
T , lj+1, . . . , lk−1, xk,

�(1 + T ), . . . ,�(1 + T )

)
, (32)

which gives,

C(�x) 	 1

ln 2

(
	2

(xk + l + 
)2

(
x2
k − 1

	

(
2j

M2�2
+ 1

)
xk

+L + j

M2�2
− 1

	

(
2j

M2�2
+ 1

)
(l + 
)

)
+ 1

+(M − k)�2 + j

M2�2

)
. (33)

Here,

L =
k−1∑

i=j+1

l2
i , (34)

l =
k−1∑

i=j+1

li , (35)

1 + T = xk + l + 


	
, (36)

Table 1. Investigating the properness of the approximation

Station # 1 2 3 4 5 6 7

gi(×10−11) 0.11 0.031 0.0067 0.0018 0.0011 0.00069 0.00052

CSC pi 21.13 0.96 4.45 16.51 25.96 43.20 57.23
�i 3.430 0.010 0.010 0.010 0.010 0.010 0.010
p̂i 0.774 0.010 0.010 0.010 0.010 0.010 0.010
Ci 2.147 0.014 0.014 0.014 0.014 0.014 0.014
Ca

i
1.98 (8%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%)
C = 2.233, Ca = 2.068(7%)

NSC pi 5.12 18.11 84.46 199.53 199.53 199.53 167.38
�i 0.231 0.231 0.231 0.136 0.082 0.048 0.030
p̂i 0.188 0.188 0.188 0.120 0.076 0.046 0.029
Ci 0.300 0.300 0.300 0.184 0.114 0.068 0.042
Ca

i
0.32 (7%) 0.322(7%) 0.32 (7%) 0.19 (5%) 0.12 (3%) 0.07 (2%) 0.04 (1%)
C = 1.308, Ca = 1.389 (6%)

N+SC pi 4.52 15.98 74.50 199.53 199.53 199.53 199.53
�i 0.214 0.214 0.214 0.146 0.088 0.051 0.038
p̂i 0.176 0.176 0.176 0.127 0.081 0.049 0.037
Ci 0.280 0.280 0.280 0.197 0.122 0.072 0.054
Ca

i
0.299 (7%) 0.299 (7%) 0.299 (7%) 0.207 (5%) 0.126 (4%) 0.074 (2%) 0.055 (2%)
C = 1.284, Ca = 1.369 (6%)

The values in parentheses show relative error. Italic and bold text shows the final results of the exact and approximate algorithms, respectively.


 = 1 − j

M�
, 	 = 1 −

(
j

M�
+ (M − k)�

)
. (37)

Now, using Lemma I, the solution is one of the boundaries
given as [11],

xk � min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

	 min

⎧⎪⎨
⎪⎩

Xmax + 1
M�lj + 1, j �= 0
1

�
lM

⎫⎪⎬
⎪⎭− (L + 
)

L + 
 − 	

M�	 − 1
, M�	 > 1

lk

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (38)

xk � max

{
	(M�lj+1 + 1) − (L + 
), k > j + 1,

�

	 − �
(L + 
)

}
. (39)

Using (33), the computational cost of N′SCa reduces from
16
3 M3 + 67

3 M2 −27M +16 flops to 26M2 −23M +15 flops.
Using these results, and also the ones presented in Section

2.4.2, the computational cost of N+SCa becomes 51M2 −
46M + 33 flops. This figure should be compared to the cost
of N+SC which is 32

3 M3 + 128
3 M2 − 52M + 20 flops [11].

3. Experimental results

The proposed algorithms are developed in MATLAB
7.0.4 on a PIV 3.00 GHZ personal computer with 1 GB of
RAM. The parameters used in this study are, � = −40 dB,
I =−113 dB m, Pmax=−106 dB m, pmax=23 dB m, �=0.3,
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Table 2. Investigating the properness of the approximation when embedded into the algorithms

Station # 1 2 3 4 5 6 7

gi (×10−11) 0.4 0.0051 0.0038 0.0019 0.0014 0.0008 0.00052

CSCa E pi 5.77 5.90 7.85 16.02 21.28 37.19 57.24
Ci 2.147 0.014 0.014 0.014 0.014 0.014 0.014
C 2.233

A pa
i

5.77 (0%) 5.90 (0%) 7.85 (0%) 16.02 (0%) 21.28 (0%) 37.19 (0%) 57.24 (0%)

Ca
i

1.982 (8%) 0.014 (0%) 0.014 (0%) 0.014 (0%) 0.014 (0%) 0.014 (0%) 0.014 (0%)

Ca 2.068 (8%)

A + E Ca�
i

2.147 (0%) 0.014 (0%) 0.014 (0%) 0.014 (0%) 0.014 (0%) 0.014 (0%) 0.014 (0%)

Ca� 2.233 (0%)

NSCa E pi 1.40 111.86 148.95 199.53 199.53 166.60 57.24
Ci 0.300 0.300 0.300 0.190 0.141 0.065 0.014
C 1.310

A pa
i

1.40 (0%) 111.86 (0%) 148.95 (0%) 199.53 (0%) 199.53 (0%) 166.60 (0%) 57.24 (0%)

Ca
i

0.322 (7%) 0.322 (7%) 0.322 (7%) 0.200 (5%) 0.146 (4%) 0.067 (2%) 0.014 (0%)

Ca 1.393 (6%)

A + E Ca�
i

0.300 (0%) 0.300 (0%) 0.300 (0%) 0.190 (0%) 0.141 (0%) 0.065 (0%) 0.014 (0%)

Ca� 1.310 (0%)

N−SCa E pi 1.33 106.43 141.72 199.53 199.53 199.53 164.49
Ci 0.284 0.284 0.284 0.190 0.141 0.079 0.042
C 1.303

A pa
i

1.33 (0%) 106.43 (0%) 141.72 (0%) 199.53 (0%) 199.53 (0%) 199.53 (0%) 164.49 (0%)

Ca
i

0.304(7%) 0.304 (7%) 0.304 (7%) 0.200 (5%) 0.146 (4%) 0.081 (2%) 0.042 (1%)

Ca 1.303 (0%)

A + E Ca�
i

0.284 (0%) 0.284 (0%) 0.284 (0%) 0.190 (0%) 0.141 (0%) 0.079 (0%) 0.042 (0%)

Ca� 1.303 (0%)

The values in parentheses show relative error. Italic and bold text shows the final results of the exact and approximate algorithms, respectively.

� = 1
1.5 , and M = 7 [12]. Here, we work on a circular cell

of radius R = 2.5 km. For the station i, at distance di from
the base station, we only consider the path-loss, which is
calculated as gi = cdn

i [13]. Here, c = 7.75 × 10−3 and
n = −3.66 and di is in meters [12]. In the following, the
superscript a is used for all variables which are calculated
using the approximate forms.

Table 1 investigates the properness of the applied approx-
imation for a system solved in the three frameworks. Note
that, as expected, the error in Ca

i is always less than 10%
in all cases. The least error is observed in CSC for those
stations which transmit at the minimum capacity. This was
predicatble, because based on Fig. 1b, we know that smaller
values of xi/(1+T ) undergo smaller errors. Also, note that,
as again expected from the discussion given for Eq. (12),
the approximation is always producing excessive results for
NSC and N+SC. Furthermore, as again expected, the ap-
proximation is sometimes conservative in the case of CSC,
but not always.

Table 2 shows the results of solving a sample problem
with the three algorithms. For each algorithm, first the ex-
act results are shown (E). Then, the raw results of the ap-

proximate algorithm are presented (A), followed by the re-
sults of finding the exact values using the approximate so-
lutions (A + E). These last ones are the final outputs of the
CSCa , NSCa , and N+SCa algorithms. As stated at the end of
Section 2.3, as the proposed algorithms find precise values
of the boundaries, the value of pa

i is always identical to
the values of pi . However, There exists a chance that the
approximation may deviate the optimization process from
finding the real maximum, due to the induced errors. In this
experiment we did not observe such an event.

In an effort to empirically find the chance of the approxi-
mation distracting the optimization process from the optimal
point, the three algorithms were executed for ten thousand
different position of different number of stations (M ∈
[1, 25]). Doing this experiment, only one erratic incident was
found. With M = 3, g1 = 0.39 × 10−13, g2 = 0.23 × 10−13,
and g3 = 0.05 × 10−13, the approximation made an error in
spotting the optimum point in CSCa . This error induced a
3% deviation in the final result. Based on this experiment
we can roughly state that there is a less than 0.1% chance
for a less than 5% error when the approximation is used.
However, note that the error has occured when no maximum
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2 bound has been set for Ci . Here, we extensively analyze this

case.
Table 3 analyzes this error. The bold number in the C

row shows CSC’s choice. Similarly, the bold number in Ca

row show CSCa’s selection. The problem here is that the
approximation has changed 1.296 into 1.413, carrying about
8% error. Then, mistakenly, CSCa has rejected the value of
1.227 in delusion of having found a better value. Trying to
find the root of this error, we see that C1 and Ca

1 are far apart,
carrying more than 9% error. The reason for this error is the
high x̂1 of about 0.44. Looking at Fig. 1b, we see that x̂1 is on
the worst range in respect to the error of the approximation.
One way to refrain from these errors is to have smaller x̂i’s,
which means having more fair systems. In fact, in the case
of NSCa and N+SCa , we do have x̂ ∈ [�, �]=[0.03, 0.19],
the shaded area in Fig. 1. This explains why the only case of
erratic behavior observed here has happened in CSCa and
not NSCa or N+SCa .

4. Conclusions

Based on the formulation of the reverse link aggregated
capacity maximization problem available in the literature,
a new approximation for computing the aggregate relative
capacity was proposed. As the available algorithms find the
aggregate capacity for a large set of candidate points, the
approximation is beneficiary in reducing the overall com-
putational cost. After giving mathematical guarantees that
the application of the proposed approximation is acceptable
within an error range, its actual implementation in the avail-
able algorithms is discussed. Also, it is shown that there is
a decrease of one in orders of M in the computational costs
of the available algorithms when the approximation is be-
ing used. Using examples and numerous safety checks, we
observe that beyond a negligible probability, the approxima-
tion does not lead to false results. Analysis shows that there
is a 0.1% possibility that there may be a less than 5% error
in the results. Extensive investigation shows that this error
happens in the case of the classical formulation of the prob-
lem, in which the system is capable of becoming very par-
tial. This way, the approximation is shown to be vulnerable
to monopoly of power. Hence, we conclude that, in more
controlled environments, in which the share of powers of
different stations are in a limited range, the approximation
yields precise results while reducing the computational cost
by a factor of more than 1

5M , where M is the number of the
stations.
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