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Closed Form Solution for Maximizing the Sum Capacity of
Reverse-Link CDMA System with Rate Constraints

Arash Abadpour, Attahiru Sule Alfa, and Anthony C. K. Soong

Abstract— In this paper, we work on maximizing the capacity
of the reverse link of a CDMA wireless network. Oh and
Soong [1] presented an information–theoretic capacity model
for analyzing this system. That formulation produces solutions
that often result in unfairness allocation of power to most users.
Here, we propose the addition of a maximum capacity constraint
into the problem, thereby creating a more fair power allocation
scheme. First, we improve on the algorithm presented in [1] by
proposing a closed form solution and an algorithm which works
nine times faster. Then, we propose a closed form algorithm for
solving the new enhanced problem.

Index Terms— Quality of service, single cell, reverse link
CDMA, optimization.

I. INTRODUCTION

W ITH the introduction of multimedia services to wire-
less CDMA communications, the goal is no more to

provide fixed capacity to all users [2], but to maximize the
aggregate capacity given a set of constraints [3]. In this paper,
we focus on maximizing the capacity of the reverse link
(uplink), which is often the limiting link [4]. Note that we are
looking at the traffic channels, and not the access channels [5].
We emphasize that power control strategies used in the reverse
link are completely different from those utilized in the forward
link [6]. This is mainly due to the stringent requirements of
the reverse link [7].

Maximizing the capacity of the reverse link in this paper
is achieved through controlling the transmission power of the
individual stations. The analysis is carried out in a single–
cell system by assuming that either there is only one cell in
the system or that the activity in other cells can be modeled
as interference to the current cell [8]. We also use the term
capacity as the rate of transmission of each station. To relate
transmission power to rate, we use Shannon’s theorem as
a maximum bound [3], [9]. This approach is adopted from
previously developed models (see [10] for example).

The system–wide information theoretic capacity of CDMA
systems was first analyzed in [8] and then developed further
for multi–user networks [11], [3]. While these works focused
on the set of all capacities, more recent research has benefited
from the advances in matched filters and has analyzed the
aggregate capacity [10], [12], [13]. In these works, assuming
a sub–optimal coding scheme, the mapping between signal to
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interference ratio (SIR) and throughput is determined by the
coding strategy. A next development has been the assumption
of Shannon capacity. Although, Shannon only gives the maxi-
mum bound for the capacity, the existence of coding strategies
such as Turbo Coding makes the Shannon bound practically
reachable [3].

Here, we first formally define the problem. Assume that
there are M mobile stations with reverse link gains of
g1, · · · , gM , which satisfy g1 > · · · > gM . Denote the transmit
power of the i–th mobile station as pi, 0 ≤ pi ≤ pmax where
pmax is the maximum transmission power of each station.
With a background noise of I , the signal to noise ratio (SNR)
for the signal coming from the i–station, as perceived by the
base station, is calculated as,

γi =
pigi

I +
∑M
j=1,j �=i pjgj

. (1)

Using C = B log2 (1 + γ) and omitting the constant B, the
aggregate capacity of the system can be written as,

C(�p) = log2

(
I +

∑M
j=1 pjgj

)M
∏M
i=1

(
I +

∑M
j=1,j �=i pjgj

) . (2)

The aim of the optimization problem formulated in [1], which
has been improved here, is to find the vector �p = (p1, · · · , pM )
which maximizes C(�p) subject to these constraints,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀i, 0 ≤ pi ≤ pmax

∀i, pigi

I +
∑M
j=1,j �=i pjgj

≥ γ

M∑
i=1

pigi ≤ Pmax

. (3)

We call this the classical problem. In [1], the authors showed
that the search space of this problem can be reduced from
[0, pmax]M to a finite number of one–dimensional spaces.
Then, to locate the optimal point, they used a numerical search.
This solution was observed to lead to one user receiving a
disproportionately higher capacity (power allocation) than the
remaining users. This type of result we say is unfair to some
users. In addition we find that the algorithm developed in that
paper could be improved significantly.

In this paper, we go further and prove that the search space
can be reduced to an order of M points, compared to the
order of M intervals given in [1]. This way, we eliminate
the numerical search stage used in [1] and achieve a higher
level of performance and accuracy. We show that using these
results the problem is solved much faster. Then, to solve the
known unfairness issue about the problem, we add a maximum
capacity constraint. Subsequently, we propose a closed form
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algorithm for solving the new problem and show that the
unfairness is limited in the new problem formulation. Finally,
we compare the two problems in a time interval, for moving
stations.

II. CLASSICAL PROBLEM: IMPROVEMENT TO ITS

SOLUTION TECHNIQUE

In this section we present the summary of our improvements
to the classical problem.

Defining the variable xi = pigi/I , the classical problem
can be rewritten as minimizing,

Φ(�x) =

∏M
i=1

(
1 +

∑M
j=1 xj − xi

)
(
1 +

∑M
j=1 xj

)M , (4)

subject to,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀i, 0 ≤ xi ≤ li =
pmax
I

gi

∀i, xi

1 +
∑M
j=1 xj

≥ ϕ =
γ

γ + 1
M∑
i=1

xi ≤ Xmax =
Pmax
I

. (5)

Because of the special structure of (4) and (5), we focus on
the hyperplanes defined as

∑M
i=1 xi = T for fixed values of

T , independently. In such a hyperplane, the problem can be
restated as finding the minimum of Φ(�x) = (1+T )−MΦT (�x)
where ΦT (�x) =

∏M
i=1 (1 + T − xi). Then, having fixed T ,

the problem is to minimize ΦT (�x). Furthermore, in these
hyperplanes, the constraints can be written as T ≤ Xmax

and ∀i, ϕ(1 + T ) ≤ xi ≤ li.
Theorem I: Consider any i �= j, and δ, changing xi and xj

into xi + δ and xj − δ, respectively, gives another point on
the same hyperplane. In the solution to the classical problem,
we establish that |(xi + δ) − (xj − δ)| ≤ |xi − xj |.

For proof of this theorem, as well as the proofs for other the-
orems given in this paper, refer to [14], [15]. Then, a modified
version of Proposition 1 in [1] is stated as Theorem II,which
gives the structure of the optimum solution to the classical
problem. Here, the unknowns are k, xk, and T ..

Theorem II: If there is any solution to the classical prob-
lem, then it is structured as �x = [l1, · · · , lk−1, xk, ϕ(1 +
T ), · · · , ϕ(1 + T )], for a value of k.

The work introduced in [1] stops at this point and uses
numerical search for different values of k to find the best xk.
Here, we go further and reduce the size of the search space by
finding appropriate necessary and sufficient bounds for both
k and xk, using Theorem III. This theorem also shows how
T is related to k and xk.

Theorem III: In the optimal solution to the classical prob-
lem, we have T = xk+L+1

1−(M−k)ϕ − 1, where L =
∑k−1
i=1 li.

Furthermore, k must satisfy M − 1
ϕ + 1 < k < 1

ϕ − 1
lM

+ 1
and xk must comply with mink ≤ xk ≤ maxk for (6). All
these inequalities are both necessary and sufficient.

By reducing the search space from a set of one–dimensional
spaces into a finite set of points we present in Theorem IV how
to determine the optimal xk, for a known k. This is another

important contribution of this paper, compared to [1], where
the plausible interval for xk is numerically searched.

Theorem IV: In the optimal solution to the classical prob-
lem, xk must accept one of the marginal values given in
Theorem III.

Using the results produced so far we propose the algorithm
Classical Single–Cell (CSC) (for details refer to [14]). This
algorithm searches for the optimal solution among less than
2M points, for which closed forms are given. Analysis of
the proposed algorithm shows that its computational cost
is O(M2) flops, 8M2 flops in the worst case and 2M2

flops in a typical one. The old algorithm needs 75M2 flops.
Comparing this with the computational complexity of the
proposed algorithm, the proposed one is at least more than
nine times faster, usually more than thirty six times faster. It
is worth to mention that it can be shown that the actual value
of Pmax is important only if Pmax < pmaxgM

γ+1
γ − I .

III. WEAKNESS OF THE OLD PROBLEM

Experimental analysis shows that in the solution to the
CSC problem, every station, except for the first one, is set
to transmit at the minimum possible SNR. The first station’s
transmit power, on the other hand, is only limited by the
maximum aggregate power received, or its own maximum
power limit. This results in a ratio unfairness of over a
thousand, in most cases, where the ratio unfairness, f̃ , is
defined as the ratio between the maximum and the minimum
capacities of the stations.

This was observed in [1], [12], [13]. In fact, this unfairness
was one of the main reasons the authors in [1] included the
minimum SNR constraint into the problem. We conjecture that
the problem with the solution comes from the fact that the
constraints neglect the unfairness of the solution. Furthermore,
the formulation ignores the fact that a maximum bound on the
capacities of the single stations is also necessary.

IV. NEW PROBLEM

Based on the discussion given in Section III, we propose
a new constraint to be added to the optimization problem, as
∀i, Ci ≤ η. Now, using the definition of xi, and by defining
ω = 1−2−η , the problem reduces to minimizing ΦT (�x) given
T ≤ Xmax and ∀i, ϕ(1 + T ) ≤ xi ≤ min {li, ω (1 + T )}.
Note that, because the objective function of this problem is
identical to the one for the classical case, Theorem I is still
valid. Furthermore, looking at the search space of the new
problem, it is a pyramid–like structure. While in the classical
problem the maximum bounds were decreasing, in the new
problem they are fixed for some initial values of i, where
li > ω (1 + T ), and then they start decreasing. Thus, the three
lemmas given in [1] are still valid and a theorem similar to
Theorem II can be proved similarly for the new problem.

Theorem V: If there is any solution to the new prob-
lem, then it is structured as �x = [ω(1 + T ), · · · , ω(1 +
T ), lj+1, · · · , lk−1, xk, ϕ(1 + T ), · · · , ϕ(1 + T )], for a pair of
j and k.

Theorem VI: In the optimal solution to the new problem
we have T = 1

ψ (xk + L+ 1) − 1 where L =
∑k−1
i=j+1 li and

ψ = 1−[jω + (M − k)ϕ]. Furthermore, we must have ψ > ϕ
and minjk ≤ xk ≤ maxjk for,
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⎧⎪⎪⎨
⎪⎪⎩

maxk = min
{
lk, (Xmax + 1) [1 − (M − k)ϕ] − L− 1, lM

1 − (M − k)ϕ
ϕ

− L− 1
}

mink =
ϕ(L+ 1)

1 − (M − k + 1)ϕ

(6)

TABLE I

COMPARISON OF THE CLASSICAL PROBLEM AND THE NEW ONE. HERE, P IS THE PATTERN, WHERE x AND X INDICATE THAT THE STATION IS

TRANSMITTING WITH THE MINIMUM AND MAXIMUM CAPACITIES, RESPECTIVELY. ALSO, b AND l MEAN THAT xi IS IN BETWEEN OR EQUALS li ,

RESPECTIVELY.

Station # 1 2 3 4 5 6 7 8 9 10
gi (×10−12) 0.52 0.018 0.016 0.0091 0.0082 0.0081 0.0075 0.0059 0.0059 0.0045

Classical

P b x x x x x x x x x

Problem

pi 46.5266 5.2114 5.8548 10.4390 11.6260 11.7556 12.6169 16.0532 16.1979 20.9157

Ci 2.3606 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046

C̃i 98.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%

C 2.402

f 2.356

f̃ 518.2

New

P X l l l l l l l l b

Problem

pi 14.662 16.092 16.189 16.584 28.796 36.313 50.000 13.744 14.535 18.984

Ci 0.3000 0.2111 0.1863 0.1015 0.0908 0.0898 0.0835 0.0652 0.0646 0.0498

C̃i 24.1% 17.0% 15.0% 8.2% 7.3% 7.2% 6.7% 5.2% 5.2% 4.0%

C 1.243

f 0.2502

f̃ 6.027

����������������
���������������

maxjk = min

����������
���������

lk,
ω

ψ − ω
(L+ 1), ψ > ω,

ψ

ω
lj − (L+ 1), j �= 0,

ψ

ϕ
lM − (L+ 1),

ψ(Xmax + 1) − (L+ 1),

����������
���������

minjk = max

��
�

ψ

ω
lj+1 − (L+ 1), k > j + 1,
ϕ

ψ − ϕ
(L+ 1)

��
�

. (7)

Theorem VII: In the optimal solution to the new problem,
xk must accept one of the marginal values given in Theo-
rem VI.

Using Theorem VII we propose the algorthm New Single
Cell (NSC) (for details refer to [15]). This algorithm searches
for the optimal solution among less than 2M2 points, for
which closed forms are given. Analysis shows that the com-
putational cost of this algorithm is O(M3), 5.3M3 flops in
the worst case and 1.3M3 flops in a typical one. We define
the subtractive unfairness f as the difference between these
two entities.

It can be shown that in the new problem,

f ≤ log2

�
1 − ϕ

1 − ω

	
� η − 1

ln 2
γ, f̃ ≤ log2(1 − ω)

log2(1 − ϕ)
� η

γ
ln 2. (8)

Note that such bounds on the unfairness of the system did
not exist in the classical problem.

V. EXPERIMENTAL RESULTS

The computer codes for the proposed algorithms are de-
veloped in MATLAB 7.0.4 on a PIV 3.00GHZ with 1GB of
RAM. The parameters used in this study are γ = −50dB, I =
−113dBm, and Pmax = −106dBm, pmax = 23dBm [16],

[17] plus η = 0.3. Here, we work on a circular cell of radius
R = 2.5Km. For the station i at distance di from the base
station, we only consider the path loss which is calculated
as gi = Cdni [18]. Here, C and n are constants equal to
7.75×10−3 and −3.66, respectively, when di is in meters [16].

To compare the results of the two formulations, the same
problems are solved in both frameworks. Table I shows the
values of gi for a sample example where M is equal to 10.
Table I also shows the solutions to the classical and new
problems with the set of parameters given in the above. For
each problem, first the pattern of the solution is given. Using
this pattern we are interested in seeing where the breaking
points occur. As also expected from previous research [12],
[13], the classical solution serves the first station with the
maximum possible capacity while the others are left to the
minimum guaranteed amount. When we add the maximum
capacity constraint, we are in fact limiting the first station’s
capacity. As seen in the results of the new problem, this results
in a more balanced spread of the capacity between more users.
Looking at the solution to the new problem, nine users are
served at the maximum possible capacity (determined either
by η or li) while the tenth one has a value in between.

To show this difference more clearly, we define the capacity
share of the i–th station as C̃i = Ci

C . The capacity shares in
both cases are shown in Table I. It is clear that the classical
problem produces a solution which is dominantly dependent
on the first station, while the solution to the new problem
spreads the capacity more evenly among more number of
stations.

As expected both from the analysis and from the set of
capacity values shown here, the solution to the new problem
is more fair than the one produced by the classical problem. In
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Fig. 1. Capacity shares of different stations over time shown by different colors. (a) Classical problem. (b) New problem.
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Fig. 2. Capacity of different stations over time. (a) Classical problem. (b) New problem.

fact, the ratio unfairness measure is about eighty times lower in
the new problem compared to the classical one; 6 compared to
518. Note that, here, we see the aggregate capacity becoming
smaller in the new problem as a result of adding the maximum
capacity constraint.

Here, we carry out another experiment in which M = 5
stations move around in a cell as modeled by a discrete random
walk with the speed at each moment chosen as a uniform
random variable between zero and 5Km/h [19]. Here, we
assume that no station leaves or enters the cell. Now, looking
at a time span of 20s, the system is solved every 100ms using
both algorithms, independently. It is worth to mention that

CPU utilization is 7% and 36% for the classical problem and
the new one, respectively.

Figure 1 shows the capacity shares of different stations
in the two problems over time, where each color indicates
one station. As anticipated, the classical problem tends to
allocate its entire resources to the closest station at each
moment. On the contrary, the new problem only increases
its dependency upon each station as they get closer to the
base station. Comparison also shows that the classical problem
tends more to force stations to have rapid changes in the
power [15]. Furthermore, the capacity curves for the classical
problem, given in Figure 2–a, show that the stations are mostly
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oscillating between two situations of minimum capacity and
a very high one. On the other hand, the new problem (see
Figure 2–b) keeps the capacity of different cells between the
two specified bounds. The significant observation about the
solution to the new problem in this example is that the capacity
of none of the stations is ever squeezed down to the minimum
guaranteed limit (this may not always be true).

VI. CONCLUSIONS

In this paper, the problem of optimizing the aggregate
system capacity of the reverse link in a single–cell CDMA
system was addressed. The formulation was adopted from
previous research which also suggested a numerical algorithm
for solving the problem. Here, we proposed a closed form
algorithm which solves the problem at least nine times faster.
Then, to solve the unfairness issue about the problem, we
proposed a maximum capacity constraint to be added to
it and proposed another closed form algorithm for solving
the resulting problem. We also analytically showed that the
new constraint gives an upper limit for the unfairness of the
solution. This was also presented by solving the two problems
for the same set of stations and parameters. Then, we adopted
a scenario in which a few stations move around in a cell. We
showed that the classical problem tends to limit all stations’
capacities to the minimum guaranteed values, while the closest
station is granted a very high capacity. The new problem, on
the other hand, only increases its dependency on the stations,
as they become closer to the base station.
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