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Abstract

Image segmentation is a low–level operation, concerned with partitioning an im-
age into homogeneous regions. In a large number of applications, segmentation
plays a fundamental role for the subsequent higher–level operations; such as recog-
nition, object–based image/video compression, object tracking, scene analysis, and
object–based image editing. Until recently, attention was focused on segmentation
of grayscale images, but the advances in computational power and instrumentation
has evolved the research on color image segmentation. Although, many researchers
have tried to extend the methods of grayscale image segmentation to the color im-
ages, working in this multidimensional field, enables the implementation of more
efficient methods. At the heart of any color image segmentation method, relies an
appropriate likelihood measure or a suitable homogeneity criteria. In this paper, the
performance of the three paradigms of Euclidean distance, Mahalonobis distance,
and reconstruction error are analyzed in terms of achieving perfect likelihood mea-
sures, robustness, and leading to promising homogeneity decisions. While the Eu-
clidean distance is proved to perform poor in all cases, the proposed reconstruction
error out–performs the Mahalonobis distance with much lower computation cost.
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1 Introduction

Image segmentation is a low–level
operation, concerned with parti-
tioning an image into homogeneous
regions [1–3]. Although, there are
many different descriptions for ho-
mogeneity, such as the intensity, tex-
ture, and color, to name a few, color
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is known as a more appropriate ho-
mogeneity descriptor, because of its
simplicity and intuitionism [4]. In
a Large number of applications (in
image processing, computer vision,
and computer graphics), segmenta-
tion plays a fundamental role before
applying the higher–level operations
like recognition, object–based im-
age/video compression, object track-
ing, scene analysis, and object–based
image editing [5,6].

As image segmentation is a spatial–
spectral process (finding clusters in
the spectral histogram which result
in meaningful homogeneous regions
in the spatial domain), the problem is
solved in a give–and–take fashion be-
tween satisfying (sometimes) contra-
dictory spectral and spatial concerns.
It is proved that any image segmen-
tation approach must solve the prob-
lem of finding either a suitable likeli-
hood measure or a meaningful region
homogeneity criteria [4]. In this pa-
per, we refer to the problem of find-
ing a meaningful likelihood measure
and a region homogeneity criteria.

Some simple methods are reported in
the literature, that extend grayscale
segmentation methods to the color
image segmentation era (e.g. see [7]).
Investigating this extended–grayscale
methods makes clear that they are
also using a min/max fashion likeli-
hood measure.

Using the Euclidean distance is gen-
erally accepted as a proper likelihood
measure, while different authors add
some extra processing to improve the
results [4]. For example in [8] the au-
thor uses the CIE−Lab color space.

Having in mind that the Euclidean
distance only depends on the cen-
tral point of the cluster and not on
the marginal values and the spread
of it, it is clear that (theoretically)
The Euclidean distance is a simple
but not a perfect solution. Although
in [9] the author claims to use a
better designed fuzzy scheme in the
CIE − Lab space, at the heart of
the method the Euclidean distance
of the point and the cluster center
are ruling the likelihood. In [10] the
authors uses the Euclidean distance
without any manipulations.

To overcome the shortcomings of the
Euclidean distance–based likelihood
measures, in [11] the authors uses a
weighted Euclidean distance, which
when tuned well, converges to the
well–known Mahalonobis distance.
In this approach, not only the cen-
tral point of the cluster is considered,
but also the spread of the data is
incorporated as a set of normalizing
factors.

As the likelihood measures tend to
compute the distance between a
point and a cluster, they rank better
members with smaller numbers, as
is the purpose of any distance mea-
sure. This is in fact in contrast with
the ordinary fuzzyfication approach
which marks better members with
larger numbers in the range of [0, 1]
and vice versa. Thus, a mapping
function is needed to produce the
desired result. The general defini-
tion of such a mapping is y = f(x

σ
),

while f is an odd function, mapping
[−∞,∞] → [0, 1] in an upside down
scheme. Considering a cluster r, on
which the distance function is de-
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fined as er(�c), leads to the likelihood

measure of f( er(�c)
σ

). It is clear that
for all �c ∈ r, we expect the likelihood
measure to be near 1. Thus, σ must
be statistically computed in terms
of {er(�c)|�c ∈ r} while f must have a
flat ceil; we expect f to map [−1, 1]
to the vicinity of 1. Note that, this is
in contrast with the generally–used
Gaussian functions [10].

The main purpose of this paper is to
compare the three likelihood defini-
tions of Euclidean distance (ẽE

r,p(�c)),
Mahalonobis distance (ẽM

r,p(�c)), and
the proposed reconstruction er-
ror [12] (ẽR

r,p(�c)), in terms of image
fuzzyfication and homogeneity de-
cision. In this paper we compare
ẽE

r,p(�c), ẽM
r,p(�c), and ẽR

r,p(�c) as likeli-
hood measures. Also, we consider
whether ‖eE

r ‖r,p, ‖eM
r ‖r,p, and ‖eR

r ‖r,p

are well-defined homogeneity crite-
ria.

The following sections of this paper
are organized as follows, Section 2 de-
scribes the method used in this pa-
per, while Section 3 discusses the ex-
perimental results and Section 4 con-
cludes the paper.

2 Proposed Algorithm

The Euclidean distance is the most
generally used likelihood measure,
defined as:

eE
r (�c) = (�c − �η)T (�c − �η) (1)

where�c is the vector, we want to mea-
sure its distance to the cluster r, and

�η is the expectation of the color vec-
tors of cluster r.

The Mahalonobis distance is a well-
known likelihood measure, defining
the membership of �c to the cluster r
as:

eM
r (�c) = (�c − �η)T C−1(�c − �η) (2)

where, C is the covariance matrix of
the color vectors of cluster r, with its
columns indicating the direction of
the principal components ordered in
a descending fashion (corresponding
to the associated eigenvalues).

In [12] the authors proposed to use
the error made by neglecting the two
less important principal components
as a likelihood measure. The likeli-
hood of the vector �c to the cluster r
is defined as [12]:

eR
r (�c) = ‖�́v(�c − �η)�v − (�c − �η)‖ (3)

while �v shows the direction of the first
principal component and ‖�x‖ denotes
the normalized L1 norm:

‖�x‖ =
1

N
ΣN

i=1|xi| (4)

Investigating (1), (2), and (3) makes
clear that, to make eX

r (�c) com-
parable over different clusters, a
normalization scheme is crucial
(X ∈ {E,M,R}).

In [12] the authors proposed to use
the following stochastic margin as the
normalization factor:

‖f‖r,p = arge

(
P�x∈r{f(�x) ≤ e} ≥ p

)
(5)
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where p is the inclusion percentage.
Equation (5) leads to the definition
of the normalized likelihood func-
tions [12]:

ẽX
r,p(�c) =

eX
r (�c)

‖eX
r ‖r,p

(6)

Also, the ‖eX
r ‖r,p can be used as a

homogeneity criteria for usages such
as Quad–tree decomposition [13] and
region growth [2].

It is clear that all eX
r,p(�c) are giving

lower values for the color vectors
similar to those exist in r. Thus, a
fuzzy membership function is needed
to map [−1, 1] → [1, 1 − ε] and
[−∞,−1]∪ [1,∞] → [1−ε, 0]. In [12]
the authors proposed a manipulated
form of the well–known low–pass
Butterworth filter for the sake of
tunability and simplicity, as:

Bα,β(x) =
(
1 + (

x

τα,β

)2Nα,β
)− 1

2
(7)

where Nα,β and τα,β are defined
as [12]:

Nα,β =

[
log2

(
α
√

1 − β2

β
√

1 − α2

)]
(8)

τα,β = α
1

Nα,β (1 − α2)
− 1

2Nα,β (9)

where [x] denotes the nearest integer
value to x. The function is designed
in the way that satisfies:

Bα,β(1) = α,Bα,β(2) = β (10)

It is clear that selecting a large mem-
ber of ]0, 1[ as the α value and an

small member of ]0, α[ as the β value,
leads to a desired fuzzyfication. Note
that the above definition of mem-
bership functions is in contrast with
the general selection of the Gaussian
functions.

Although in the definition of the Eu-
clidean distance and the Mahalono-
bis distance, Principal Component
Analysis(PCA) [14–16] is not re-
ferred, but they are both marginal
samples of using PCA for measuring
the likelihood. In the terminology of
PCA, the expectation of the cluster
is defined as [16]:

�η = arg�v

(
min

[
E{|�x − �v|2}

])
(11)

which is the zero dimensional rep-
resentation of the data. It can be
proved that the above definition
leads to the canonical definition of
expectation [16]. Defining the k–th
residue of �x as [16]:

∆k(�x) = �x − �η −
k∑

i=1

�vT
i (�x − �η)�vi (12)

for k = 0 · · ·N (N is the original
dimension of the cluster), where �vi

is the direction of the i–th principal
component of the cluster, it is clear
that the Euclidean distance equals
‖∆0(�x)‖2 [16], while reconstruction
equals 1

3
‖∆1(�x)‖1 [12]. The relation

of the Mahalonobis distance to the
PCA theory is straight–forward: The
Mahalonobis distance is the square
root of the squared principal compo-
nents weighted by their importance
(the eigenvalues) [16]. To see details
about using the PCA in color image
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processing see [17,12].

Although RGB color space is used
in this paper, but having in mind
that the PCA representation is
translation, rotation, and scale in-
variant [16], while all measures
and criteria investigated in this pa-
per rely on PCA, it is clear that
the conclusions of this paper ap-
plies to any color space, linearly
derived from RGB in a reversible
fashion [18] (such as CMY K [19],
Y CbCr [20], Y IQ [21], Y UV [22],
and I1I2I3 [23]). This does not
hold for non–linearly derived color
spaces (e.g. HSI [24], HSV [25,26],
CIE −XY Z, CIE − La∗b∗, CIE −
Lu∗v∗, CIE − L∗HoC∗ [27–29], and
HMMD [30]) or irreversible linear
ones.

3 Experimental Results

To compare the performance of dif-
ferent likelihood measures, 42 color
images (including the standard im-
ages Lena, Mandrill, Airplane, Pep-
pers, Girl, and Couple), in RGB
color space were used (all low–
compressed jpeg files). In each image
10 rectangular homogeneous regions
were selected, and the corresponding
fuzzyfication results were compared
subjectively. To test the robustness
of the methods, tests were performed
with regions containing up–to 25%
irrelevant points and with different
values of p. Also, the complexity
of the methods were computed in
terms of flops. To compare different
homogeneity criteria, 49 randomly
selected rectangular regions in each
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Fig. 1. Log–magnitude of the member-
ship function (Bα,β) for α = 0.9 with
different values of β.

test image, were sorted according
to each homogeneity criterion in a
descending fashion. All experiments
were performed on a large database
of color images [31] and some sam-
ples representing the whole results
were selected for better illustration
of the results.

Figure 1 shows the log–magnitude
of the membership function, Bα,β

for α = 0.9 with different values of
β. It is clear that while larger val-
ues of β increases the domain of the
typical members (those with larger
likelihood values), the function has
an area of almost-one values for the
interior points of the cluster. This
event does not happen for the Gaus-
sian function, in which one must
increase the domain of better mem-
bers, by increasing σ, leading to an
overall increase of membership val-
ues. Also, the sharp transition be-
tween the points (1, α) and (2, β),
which enables a crisp classification
of points in the proposed member-
ship functions, does not exist in the
Gaussian function.

The computational complexity of
each likelihood method can be sep-
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arated into two phases of: data–
collection and utilization. It is clear
that in terms of data–collection com-
plexity, the Euclidean distance is the
simplest (just needs the expectation
of the cluster), while the Mahalono-
bis distance is the most complex
(relies on computation of the ex-
pectation and also all eigenvalues
and eigenvectors). The utilization
phase of the Euclidean distance con-
sists of 3 + 3 + 1 = 7 flops, while
the Mahalonobis distance needs
2× 9× (3 + 3) + 3 = 111 flops, while
the reconstruction error uses only
3+3+3+3+3+7 = 22 flops. Thus,
in terms of utilization complexity,
the Mahalonobis distance is the more
consuming, while the Euclidean is
the fastest. The same occurs for the
amount of the memory needed to
code the likelihood measure of a re-
gion in the three methods (3, 12, and
6 real numbers for the three methods
of Euclidean distance, Mahalonobis
distance, and reconstruction error,
respectively).

Figure 2 shows the results of fuzzyfi-
cation one of the samples with these
three methods, based on four typical
base regions. In all cases, the param-
eters are set as α = 0.95, β = 0.4,
p = 0.9. Note that in the entire pa-
per, to give a better printing result,
the fuzzyficated images are printed in
an inverted fashion. It is clear that
while non of the figures 2–b, 2–f, 2–
j, and 2–n (samples of The Euclidean
fuzzyfication) have a desirable fuzzy-
fication and do not enabling the user
to classify members and non mem-
bers with a reasonable margin of cer-
tainty, samples corresponding to the
Mahalonobis distance and the recon-

struction error are promising.

Figure 3 shows a few results of
comparing the robustness of differ-
ent methods against partially non–
homogeneous base regions. In this
test, base regions were contaminated
with at most 25% irrelevant points.
In figure 3–a a small portion of the
leaf is added to the apple, resulting
in a desperate Euclidean distance–
based fuzzyfication show in figure 3–
b, which both include the apple and
the leaf. While the two other meth-
ods led to more acceptable results,
the reconstruction error gave a bet-
ter neglecting of the irrelevant points
(compare Figures 3–c and 3–d). The
same happens for the case of ini-
tializing all methods with almost
entirely grass points and a small por-
tion of the red ribbon (Figure 3–e).
The Euclidean distance not only has
failed to reject ribbon points, it also
have marked the apple points with
high likelihood (Figure 3–f). The two
other methods have better compen-
sated the effect of irrelevant point.
Comparing Figures 3–g and 3–h
makes it clear that the reconstruction
error has neglected both the ribbon
points and the apple points better
than the Mahalonobis distance.

Figure 4 shows the results of com-
paring the robustness of the three
different methods against parameter
selection. As the effects of selecting
parameters α and β is the same for
all methods, here just the effect of
selecting p is investigated. Using the
image and the base region shown
in Figure 4–a, the set of images in
Figures 4–b, 4–c, and 4–d show the
results of fuzzyfication by the Eu-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2. Comparison of fuzzyfication methods, from left to right, original images
adopted from [31] along with the base region, the Euclidean distance, the Mahalono-
bis distance, and the reconstruction error.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Comparison of the robustness of fuzzyfication methods against
non–homogeneous base regions. From left to right, original images adopted from [31]
along with the base region, the Euclidean distance, the Mahalonobis distance, and
the reconstruction error. (Original image shows a traditional Iranian Seven–S table-
cloth.).
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clidean distance, the Mahalonobis
distance, and the reconstruction er-
ror, respectively: while p is set to
the members of {0.9, 0.8, · · · , 0.1} it-
eratively, in each case. In each set
of images the top left image shows
the result of selecting the largest
value of p (0.9), while the bottom
right image belongs to the small-
est choice of p (0.1). Comparing the
case of p = 0.9 in the three sets,
shows another shortcoming of the
Euclidean distance–based fuzzyfica-
tion, in which increasing p results in
inclusion of irrelevant points in the
cluster. In the case of p = 0.9 for the
two other methods, the fuzzyfication
result contains holes of low values
corresponding to the yellow flow-
ers, which are not the members of
the clusters for sure, but in the Eu-
clidean distance the holes are filled.
Comparing the sequence of fuzzyfi-
cation results in the three methods
shows another promising result of
the Mahalonobis distance and re-
construction error. In contrast with
the Euclidean distance, in which by
decreasing p, the membership func-
tion declines in all points, in the two
other methods, decreasing p forces
the cluster to tune more fine, reject-
ing less typical members and draw-
ing the cluster edge around the set
of best members.

Figure 5 shows the sample image,
out of which 49 random rectangu-
lar regions are selected to compare
different homogeneity criteria. Fig-
ure 6 shows the randomly selected
regions sorted in terms of different
homogeneity criteria in a descend-
ing fashion. In each set of regions,
the top left image is known to be

(a)

(b)

(c)

(d)

Fig. 4. Robustness of different fuzzyfica-
tion Methods against selecting different
values of p. (a) Original image adopted
from [31]. (b) The Euclidean distance.
(c) The Mahalonobis distance. (d) The
reconstruction error.

the most homogeneous, while the
bottom right region is believed to
have the poorest homogeneity. In the
above discussion we call the regions
by the order of their homogeneity
computed by each method. Investi-
gating the order of regions computed
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Fig. 5. Sample image for homo-
geneity criteria comparison. (Adopted
from [31].).

by the Euclidean distance (Figure 5–
a) makes t clear that the ordering
does not comply with the human
perception. For example compare
the regions 40 to 43 with the 37-th
and 38-th one. Although, the Eu-
clidean distance shows that the 37-th
and 38-th regions are more homo-
geneous, the human observers order
them inversely. The same contradic-
tion happens in the set of regions
ordered by the Mahalonobis distance
(Figure 5–b). For example compare
the 15-th and the 14-th or the 28-th
and the 4-th regions. Investigating
Figure 5–c shows the similarity of
the human perception and the recon-
struction error homogeneity criteria.
Looking at the set of regions ordered
by the reconstruction error, from the
first to the last, makes clear that
the first regions (1 · · · 24-th) are the
regions containing almost just one
dominant color, while the regions of
the two and three colors are coming
afterwards.

(a)

(b)

(c)

Fig. 6. Randomly selected regions of fig-
ure 5 sorted in terms of different ho-
mogeneity criteria in a descending fash-
ion (a) The Euclidean distance. (b) The
Mahalonobis distance. (c) the recon-
struction error.

4 Conclusion

The three vector–to–cluster distance
measures of Euclidean distance, Ma-
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halonobis distance, and reconstruc-
tion error are compared, both as
the likelihood measures and the ho-
mogeneity criteria. Although, the
Euclidean distance (which is used
commonly by the researchers) is the
fastest method and needs the least
memory capacity, it neither shows
applicable fuzzyfication results, nor
leads to a proper homogeneity cri-
teria. Comparing the two other
methods, the reconstruction error is
proved to be more robust against im-
proper base region selection, leading
to a promising homogeneity criteria,
while also needing less memory with
low computational cost. In contrast
with the common use of the Gaussian
function as the membership function,
the butter–worth low–pass is used
and its higher performance is proved
mathematically and experimentally.
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