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ABSTRACT

Analysis of the multi–spectral remotely sensed images of the ar-
eas destructed by an earthquake is proved to be a helpful tool for
construction assessments. In this paper, we propose a new fast and
reliable fuzzy change detection method for multi–spectral images.
The proposed fuzzy change detection method is mathematically
and experimentally investigated and shown to be efficient and ef-
fective.
Keywords: Remote Sensing, Multispectral Image Analysis, Change
Detection, Fuzzy Clustering.

1. INTRODUCTION

In recent years, the spatial and the spectral resolution of the remote–
sensing sensors and the revisiting frequency of the satellites, has
been extensively increased. These developments, has offered the
possibility of addressing new applications of remote–sensing in
environmental monitoring [2, 6]. On the other hand, the offi-
cials are getting more and more aware of using multi–temporal
remotely sensed images for regular and efficient control of the en-
vironment [25, 9]. Also, there are reports about the application of
remote sensing change detection for global weaponry control (e.g.,
see [7]).

A key issue in remote–sensing image analysis is to detect changes
of the earth surface in order to manage possible interventions to
avoid massive environmental problems [4]. Recently, many re-
searchers have worked on using the remote–sensing data to help
estimating the earthquake damage [15, 3] or the afterwards recon-
struction progress [23, 17].

Change detection algorithms usually take two images as the
two shots before and after the change and return the locations
where the change is likely to be happened [25]. Before such stage,
always a preprocessing step is necessary to produce two compa-
rable images in the spatial domain. The process of registration
aims at performing some geometrical operations on one of the im-
ages (or both of them), to give two compatible images, in which
the pixels with the same coordinates in the two images correspond
to the same physical point [28]. Many researchers have reported
the impact of miss–registration on the change detection results

(e.g.see [22]). Here, we assume that the given images are regis-
tered in the preprocess stage.

A fundamental problem in comparing two shots of the same
scene in different times, is the changing recording conditions. As
such, a change detection algorithms needs to be robust against at-
mospheric and imaging parameters. In particular, the direct so-
lar illumination, the diffuse sky light, the path radiance, and the
transmittance of the atmosphere, as well as the dark current and
gain setting of the sensor may have changed individually in each
spectra band [25]. All these effects can roughly be categorized
into multiplicative and additive influences on the acquired data.
Thus, the relation between two shots of the same scene in differ-
ent times is very often modelled approximately as a linear func-
tion [21, 20]. Many authors use spectral pre–processing to com-
pensate these changes in the imaging parameters using ratioing
and differentiating approach [4].

There is a rich literature of change detection in gray–scale im-
ages. In [19] the authors survey the main approaches and compare
the results. Some more frequently used methods in this field are
correlation-based change detection [4], Baysian thresholding [5,
6], Artificial Neural Networks [8], and multi–block PCA [18], to
name a few. Also, some researchers have tried object–based change
detection, trying to locate the buildings and using morphological
tools to estimate the damaged locations [3].

Compared to the single–spectrum change detection, multi–
spectral change detection is being worked much less. The most
frequent approach in this field is using the principal component
analysis (PCA) to find the relation between the two images and
then mark those not complying with this relation as the locations
of the change [20, 25]. Some other researchers are using regres-
sion to find the non–changed axis [26]. Also, the application of
clustering–based methods [24, 14], special color spaces [27], and
the linear discriminants [7] are reported. Another idea for finding
the locations of change in multispectral images is to use the ex-
act signature of the constructing material of the scene [16]. This
approach is based on expensive accurate laboratory experiments.

Here, we propose a clustering–based fuzzy change detection
method for multi–spectral images and discuss its rich mathemat-
ical background. Compared to the mentioned works which result
in crisp discrimination of changed locations, we compute a more



natural fuzzy change detection mask (FCDM). In fact, the approach
in [25] is the special case of our proposed method when neglect-
ing the fuzziness factor and setting the number of clusters equal
to one. To formalize the comparison, in [25] global PCA [12] is
used while our proposed method uses local PCA [11] to gain more
adaptivity to non–linearities. Also [25] does not work in fuzzy
domain.

The rest of this paper is organized as follows: Discussing the
case of appropriate likelihood measures in Section 2.1 and fuzzy
principal component analysis (FPCA) in Section 2.2 we enter to
the mathematics of the problem. Then the proposed general clus-
tering algorithm is introduced in Section 2.4 which is used for
the proposed multi–spectral clustering in Section 2.5) resulting
in the proposed multi–clustering fuzzy segmentation method in
Section 2.6. The proposed multi–spectral fuzzy change detec-
tion method discussed in Section 2.7 uses the before mentioned
methodology and gives the final result. Section 3 contains the ex-
perimental results and discussions, and finally, Section 4 concludes
the paper.

2. PROPOSED METHOD

2.1. Likelihood Measurement

The Euclidean distance is the most generally used likelihood mea-
sure, defined as eE

r (�c) = (�c−�η)T (�c−�η), where�c is the vector that
we intend to measure its distance to the cluster r, �xT denotes the
transpose operations, and �η is the expectation of the color vectors
of cluster r defined as �η = 1

n

∑n
i=1 �xi.

The Mahalanobis distance is also a well-known likelihood mea-
sure, defining the membership of �c to the cluster r as eM

r (�c) =
(�c−�η)T C−1(�c−�η), where, C is the covariance matrix of the color
vectors of the cluster r defined as C = 1

n

∑n
i=1(�xi−�η)(�xi−�η)T .

In [1] the authors proposed to use the error made by neglecting
the two least important principal components (the second and the
third), as a likelihood measure. The linear partial reconstruction
error–based (LPRE) likelihood of the vector �c to the cluster r is
defined as eR

r (�c) = ‖�vT (�c − �η)�v − (�c − �η)‖, where �v shows
the direction of the first principal component and ‖�x‖ denotes the
normalized L1 norm ‖�x‖ = 1

N

∑N
i=1 |xi|.

2.2. Fuzzy Principal Component Analysis (FPCA)

Consider, performing the PCA transform on the set of vectors
�xi, i = 1, · · · , N , while the samples are members of the discrete
field Φ = {�φi|i = 1, · · · , n}. This situation happens when we
work on color vectors, which are repetitions of the vectors avail-
able in Φ = (N255 ∪ {0})3. Hence, we are facing the PCA
problem for the set of fuzzy vectors {(�φi; pi)|i = 1, · · · , n},
where pi is the number of repetitions of �Φi (the histogram). Con-
sider the general problem of finding the principal components of
{�xi; pi|i = 1, · · · , n}, when not restricting

∑n
i=1 pi to be 1.

Here, as we are only concerned with the zero and one dimensional
representation of the data cloud, we will derive the formulation for
�η and �ω1, but the same method leads to the computation of the
other fuzzy principal components as well.

All objective functions in the PCA theory are of the form,

∆(�x◦) =
n∑

i=1

Q�x◦(�xi), (1)

where Q�x◦(�xi) is a quadratic function. Assuming the case of re-
peated vectors, the objective function changes to,

∆(�x◦) =
n∑

i=1

piQ�x◦(�φi), (2)

where, pi is the number of occurrence of �Φo. Thus, it is reasonable
to define the objective functions in the fuzzy domain as,

∆(�x◦) =
n∑

i=1

piQ�x◦(�xi). (3)

Note that the case of pi ≡ 1 leads to the same non–fuzzy def-
inition. Also the assumption of

∑n
i=1 pi = 1 is not necessary,

because it shows itself as a constant scaling factor; not affecting
the minima.

The objective function for the expectation vector in the crisp
domain is defined as Q�x◦(�x) = ‖�x − �x◦‖2 [10]. Thus, the fuzzy
expectation is the minima of the objective function defined as ∆◦(�x◦) =∑n

i=1 pi‖�x−�x◦‖2. Investigating the condition in which the deriva-
tive of ∆◦(�x◦) in terms of �x◦ gets zero, yields,

�η =

∑n
i=1 pi�xi∑n

i=1 pi
. (4)

The objective function for the crisp first principal direction is
the direction of the maximum deviation or equivalently the direc-
tion of minimum one–dimensional reconstruction error, defined
as [10],

Q�x◦(�x) = ‖�x − �η − �xT
◦ (�x − �η)�x◦‖2. (5)

Thus, in the fuzzy domain, we should minimize the objective func-
tion defined as,

∆I(�x◦) =
n∑

i=1

pi‖�x − �η − �xT
◦ (�x − �η)�x◦‖2. (6)

Algebraic derivation of (6) and incorporating the size constraint on
the principal components, (‖�x◦‖2 = 1), leads to,

∆I(�x◦) =

n∑
i=1

pi‖�xi − �η‖2 − �xT
◦ C̃�x◦, (7)

where, C̃ is the fuzzy covariance matrix defined as,

C̃ =
n∑

i=1

pi(�xi − �η)(�xi − �η)T . (8)

As the first term in (7) is not a function of �x◦, thus, ∆I(�x◦) is
minimized when the second term is maximized. Using the method
of Lagrange multipliers for embedding the ‖�x◦‖ = 1 constraint,
we should maximize the objective function defined as,

∆̄I(�x◦) = �xT
◦ C̃�x◦ + λ(‖�x◦‖2 − 1). (9)

Differentiating (9) in terms of �x◦ and assigning the result to zero
we get C̃�x◦ = λ�x◦. Thus, �x◦ is an eigenvector of C̃, resulting in
∆̃I(�x◦) = λ. As a result, the direction of the first fuzzy principal
component is the eigenvector of C̃, corresponding to the largest
eigenvalue. It can be easily proved (using the same method), that
the other principal directions correspond to the other eigenvectors
of C̃, sorted by the eigenvalues in a descending fashion; like the
classic PCA.



2.3. Weighted Powered Sum Minimization

Consider the optimization problem defined as minimizing the func-
tion,

∆(x1, · · · , xn) =

n∑
i=1

xm
i wi, (10)

under the assumption of
∑n

i=1 xi = 1. Substituting xp = 1 −∑n
i=1,i�=p xi in (10) and differentiating with respect to xi for i �= p

results in,

xp =
w

− 1
m−1

p∑n
i=1 w

− 1
m−1

i

. (11)

Note that, hereby the normality constraint is satisfied. Substituting
(11) in (10) we have,

∆ =

(
n∑

i=1

w
− 1

m−1
i

)−(m−1)

. (12)

Assuming m > 1, ∆ will be less than all wp. Also, note that
the case of setting all xi equal to zero, except for xp = 1, leads
to ∆ = wp. Hence, having in mind that the gradient of ∆ gets
zero just once, while the value of ∆ at that point is smaller than
some marginal points, thus, (11) leads to the global minima of the
problem in hand.

2.4. Proposed General Clustering Algorithm

Consider the general clustering problem stated as minimizing the
objective function defined as,

J(X, Φ) =

n∑
i=1

c∑
j=1

pm
ij Dij . (13)

This describes the best choice of clustering the data points X =
{�x1, · · · , �xn} into c clusters described by Φ = {φ1, · · · , φc}.
Here, pij is the fuzzy membership of �xi to the jth cluster and Dij

is the distance between this point and the cluster. Assume that,

Dij = Ψ(�xi, φj), (14)

is the appropriate distance function for the vector geometry under
investigation. Consequently, under the Ψ distance function, we
have pij ∝ Dij and pij ∝ D−1

pj for p = 1, · · · , n, p �= i. Here,
φj is the defining parameters of the jth cluster according to the
general cluster model.

As an special case, the FCM models each cluster with a sin-
gle vector (φj = {�ηj}), and defines the Ψ function as the squared
Euclidean distance between the given vector and the cluster center.
The key point of the proposed general fuzzy clustering (GFC) algo-
rithm is the deep relation between the cluster model and the cluster
tuning function. Note that for a set of given points, the expecta-
tion vector minimizes the sum of the squared Euclidean distances.
Now assume that the function Υ tunes the cluster model φj to best
fit the points. This means that for the fuzzy set X̃ = {(�xi; pi)|i =

1, · · · , n} of vectors, φ = Υ(X̃) is the solution for;

φ∗ = argφ min

{ ∑
(�xi,pi)∈X̃

piΨ(�xi, φ)

}
. (15)

Then, the function Υ(X̃) ≡ Ẽ{X̃} is the solution for Ψ(�x, �η) =

‖�x−�η‖2. Here, Ẽ{X̃} stands for the fuzzy expectation of a fuzzy
set.

Back to the main problem of minimizing (13), assume that
we have the dual functions, Ψ(·) and Υ(·). Here, we propose an
algorithm that converges to a minimal point of (13), if at least one
exists. Consider rewriting (13) as,

J(X, Φ) =
n∑

i=1

∆i, ∆i =
c∑

j=1

pm
ij Dij . (16)

Also, assume that we have fixed Dij and we are trying to de-
cline J(X, Φ) by working on pij . As the only restriction on pij

is the normality condition (∀i,
∑c

j=1 pij = 1), there is no con-
nection between pij and pi′j , for i �= i′. Thus, declining ∆is
independently results in declination of J(X, Φ). Having in mind
the normality constraints, minimizing ∆i is a weighted powered
sum minimization (discussed in Section 2.3). Hence, we get,

pij =
D

− 1
m−1

ij∑c
k=1 D

− 1
m−1

ik

. (17)

Note that during this stage, J(X, Φ) is declined, except for the
case that pijs satisfy (17) at first. We will come back to this situa-
tion later. Now, consider rewriting (13) as,

J(X, Φ) =
c∑

j=1

Θj , Θj =
n∑

i=1

pm
ij Dij . (18)

Assume that we have fixed pij and we are trying to decline J(X, Φ)
by working on Dij . Declining Θj means tuning the j–th cluster
to minimize the overall distances in a fuzzy scheme. Note that like
above, it can be solved independently for different clusters, result-
ing in overall decline of the J(X, Φ). The solution in this state is
obtained by using the Υ function as,

φj = Υ

({
(�xi, p

m
ij )

∣∣∣∣i = 1, · · · , n

})
. (19)

Again, the J(X, Φ) can never increase in this state, and its con-
stancy shows that all the clusters have been in the best place, ac-
cording to the special distance function Ψ. The halting test of the
algorithm is the stationarity of the cluster parameters measured by
the average cluster center change defined as,

δ =

√√√√ 1

c

c∑
i=1

‖�ηi − �ηi′‖2, (20)

getting smaller than a preselected threshold δT . We propose the
procedure shown in Figure 1 to cluster the given data.

Note that during the two stages, J(X, Φ) never rises and the
case of it being constant in two consecutive stages results in stay-
ing constant for all coming stages. Thus, using this method, J(X, Φ)
is going towards a minimum point, and never gets oscillated. Note
that rather than the FCM, other methods like GK, FEC, and FCV,
are also special cases of the proposed general clustering method.



Aim: Clustering data.
Inputs:

Input vectors �xi, i = 1, · · · , n.
Number of the clusters c.
Distance function Ψ.
Stationarity threshold δT .

Output:
A set of c clusters φi, i = 1, · · · , c.

Method:
[1] Randomly initialize clusters φi, satisfying the model

constraints.
[2] Compute Dij , using (14).
[3] Compute pij , using (17).
[4] Store the clusters as φ′

i = φi.
[5] Update clusters, using (19).
[6] Compute δ, using (20).
[7] If δ > δT goto 2, else
[8] return φi, i = 1, · · · , c.

Figure 1: Proposed clustering procedure.

2.5. Proposed Multi–Spectral Clustering

When attempting to segment an image, the first step is to find a
few classes that define the image content in an intuitive way. As
stated in Section 2.1, the LPRE distance defined as,

Ψ(�c, [�η,�v]) = ‖(�c − �η) − �vT (�c − �η)�v‖2, (21)

results in a good subjective clustering of the spectral vectors in
color fields. In this approach, the cluster model is a cylinder with
its central axis having �η and parallel with �v (see Figure 2). Also,
the dual function Υ(X̃) computes the fuzzy expectation and the
first fuzzy principal component of X̃ as new values of �η and �v (as
discussed in Section 2.2). It must be emphasized that this formu-
lation results in an special case of the FCV method (r = 1) [13].

v�

e�t�a�

Figure 2: Cylindrical cluster model.

2.6. Proposed Multi–Spectral Fuzzy Segmentation

We face the segmentation problem as applying the maximum like-
lihood on the cluster membership information to relabel the image

pixels in the way that it results in meaningful geometrical con-
tinuous segments. Consider, clustering an image I , into c clus-
ters by using the method proposed in Section 2.5. The result is
the set of c images Ji, i = 1, · · · , c, which shows the likelihood
of each pixel to each of the c clusters. Note that Ji satisfies,
∀x, y :

∑n
i=1 Ji(x, y) = 1. Now, consider a p×p smoothing con-

volution kernel M . Note that M satisfies
∑p

i=1

∑p
i=1 Mij = 1.

Hence, applying M to each Ji independently to acquire J̃i, the
new membership maps will also satisfy the normality condition.
Thus, J̃i, i = 1, · · · , c can be considered as the smoothed like-
lihood to the c clusters. The main benefit of using J̃i over Ji is
the smoother resulting segments. The crisp segmentation results
can also be obtained using the ML. Here, we propose to use an
averaging kernel as M .

2.7. Proposed Multi–Spectral Fuzzy Change Detection

Assume the two images I1 and I2 which are registered using some
processing method. Also, assume that I1 is segmented into c classes
of φi, i = 1, · · · , c, where Jixy, i = 1, · · · , c shows the member-
ship of �I1xy to the i–th class. Assume performing the FPCA on the
fuzzy set {(�I2xy; Jm

ixy)} to find the new clusters φ̃i, i = 1, · · · , c

and computing the new membership values J̃ixy , which show the
degree of membership of �I2xy to the i–th new class φ̃i. We pro-
pose,

δxy =

√√√√ 1

c

c∑
i=1

(Jixy − J̃ixy)2, (22)

as the probability of the point (x, y) being changed.
Note that if I1 ≡ I2, Jixy and J̃ixy will be identical, result-

ing in δxy ≡ 0, as desired. Now assume that there is no change
between the two images I1 and I2, unless for the changes in the
imaging conditions. Assume that �xi and �yi are the spectral vectors
of the same physical points in the two images I1 and I2, respec-
tively. As stated in Section 1, �xi and �yi relate through a linear
transform namely �xi = A�yi + �b. Here, we model A as a non–
singular invertible matrix with its eigenvalues being almost con-
stant. The matrix A in the singular value decomposition (SVD)
form is written as A = V DU−1, where, U and V are orthogonal
matrices and D is a diagonal matrix with the eigenvalues of A as
its elements.

The expectation vectors in the two images I1 and I2 relate as,

E
{

�xi

}
= E

{
A�yi +�b

}
= AE

{
�yi

}
+�b. (23)

The fuzzy covariance matrices of the two images I1 and I2 satisfy
the following equations,

C1 = AE

{(
�yi − E{�yj}

)(
�yi − E{�yj}

)T
}

AT = AC2A
T (24)

Assume that the eigenvectors of C1 are �vi, i = 1, · · · , m corre-
sponding to the eigenvalues of λi, i = 1, · · · , m and the eigen-
vectors of C2 are �ui, i = 1, · · · , m corresponding to the eigen-
values of ρi, i = 1, · · · , m. Also, assume the eigenvectors of
A to be �wi, i = 1, · · · , m corresponding to the eigenvalues of
εi, i = 1, · · · , m. Thus,

∀i, C1�vi = λi�vi, C2�ui = ρi�ui, A�wi = εi �wi. (25)



First assume that the eigenvectors of A are all exactly equal to
the fixed value of λ (or equivalently ∀i, εi = λ). Thus,

A = V DU−1 = V diag(λ, · · · , λ)U−1 = λV U−1. (26)

In this situation,

AT = λUV −1 = λ2A−1 → AT A = AAT = λ2I. (27)

Now, note that,

C1A�ui = AC2A
T A�ui = λ2AC2�ui = λ2ρiA�ui. (28)

Thus, A�ui is the eigenvector of C2 corresponding to the eigenvalue
of λ2ρi. Note that,

‖A�ui‖ = λ‖�ui‖ = λ. (29)

As the eigenvalues and eigenvectors of a single matrix are identi-
cal, we have,{

(
1

λ
A�u1, λ

2ρ1), · · · , (
1

λ
A�um, λ2ρm)

}
= (30){

(�v1, λ1), · · · , (�vm, λm)
}

.

As λ2 > 0 we have,

∀i, �vi =
1

λ
A�ui, λi = λ2ρi. (31)

Thus, using the above re–clustering method, the cluster φ = [�η,�v]

in I2 results in the cluster φ̃ = [A�η +�b, A�v]. Now, we have,

Ψ(�xi, φ̃) =

∥∥∥∥[(A�yi +�b) − (A�η +�b)
]
− 1

λ2
�vT AT (32)

[
(A�yi +�b) − (A�η +�b)

]
A�v

∥∥∥∥
2

Ψ(�xi, φ̃) =

∥∥∥∥A(�yi − �η) − �vT (�yi − �η)A�v

∥∥∥∥
2

= λ2Ψ(�xi, φ̃) (33)

J̃ixy =
Ψ(�xi, φ̃j)

− 1
m−1∑c

k=1 Ψ(�xi, φ̃k)−
1

m−1
= (34)

Ψ(�xi, φj)
− 1

m−1∑c
k=1 Ψ(�xi, φk)−

1
m−1

= Jixy,

resulting in δxy = 0. Thus, the proposed method will be indepen-
dent of the lighting and imaging conditions.

Now, assume a more realistic case that εis are not exactly the
same but we have λ− δλ ≤ εi ≤ λ + δλ. For the cases that δλ

λ
is

too small the above equations change to semi–equations and still
marginally hold. In this situation δxy 	 0.

In contrast, physical changes result in different material in a
single point in different shots. Hence, they produce absolutely dif-
ferent values of Jixy and J̃ixy , resulting in non–zero patterns of
δxy . In the proposed method, at the same time both the image
sequence segmentation and the fuzzy change detection are per-
formed.

(a)

(b)

Figure 3: Multi–spectral images of the city of Bam. (a) 2003-12-
04. (b) 2003-12-29. Courtesy of IRSC.

3. EXPERIMENTAL RESULTS

The tests were performed using a PIV 2600MHz personal com-
puter with 512MB of RAM. Figure 3 shows two images of the city
of Bam by the IRS–1D satellite LIS III sensor, each containing 3
channels.

Figure 4 shows three query regions in the image shown in Fig-
ure 3–(a), corresponding to the urban area, desert, and river bed,
respectively. Figure 5 shows the results of segmenting the origi-
nal image into three segments using the maximum likelihood (ML)
method with the three likelihood measures of Euclidean, Maha-
lanobis, and LPRE. Note the cluster shapes in Figure 5–(a),(c),
and (e) and the corresponding segmentation results in Figure 5–
(b),(d), and (f), respectively. As Figure 5 shows the Euclidean and
the Mahalanobis distances have misclassified many portions of the
desert into the urban class, while the LPRE shows the best com-
pliance with the physical classes. The same results are observed
in other numerous examples. Thus, the LPRE–based likelihood
measure is the best of all descriptor for the images under inves-
tigation. Specially note that unless for the LPRE, the two other
measures have failed to classify the non–urban areas in numerous
situations and have included them in the urban class. This is so
important, because after the earthquake, some spectral vectors in
the urban class are getting members of the non–urban class, due to
the destruction.

Figure 6 shows the result of applying the proposed multispec-
tral segmentation method on the image shown in Figure 3–(a), with
the parameters set as, c = 3, m = 1 1

3
, δT = 1

2
, and k = 2.



1

2

3

Figure 4: Three query regions in the image shown in Figure 3–(a).

Figure 7 shows the result of the proposed multi–spectral fuzzy
change detection applied on the image shown in Figure 3 with the
parameters set as c = 3, m = 1 1

3
, δT = 1

2
, and k = 2. To

get a better printing result, the values of 1 − δxy are shown here.
Note the rightmost–bottom part of the city, were destructed parts
are visible, and the corresponding black spots in the change map.
Also, note that the desert part of the image is ranked to be less
changed than the urban part, as desired. The main drawback of the
proposed method is its sensitivity to the clouds. We propose using
the channels which are less sensitive to the spectrum of the clouds.

Table 1 compares the proposed method with the available lit-
erature. The comparison is made in terms of the dimension of the
input data (multispectral vs. grayscale), model–based tendency of
the method, locality of change detection (adaptability to different
effects of the change in different spectral bands), spatial informa-
tion inclusion, human intervention (supervised vs. unsupervised),
and the output space (crisp vs. fuzzy). Model–based methods are
those using the prior knowledge about the image, such as infor-
mation about the scale, contents, material and so on. As shown in
Table 1, while the proposed method is the only fuzzy–output one,
it works unsupervised and processes the changes locally with no
need to prior information about the image contents.

4. CONCLUSIONS

The performance of three likelihood measures are investigated, in
terms of their efficiency in segmenting multi–spectral images and
the LPRE distance is shown to outperform the Euclidean and the
Mahalanobis measures. A new fuzzy clustering method is pro-
posed which uses the proposed likelihood measure, and its effi-
ciency is shown both theoretically and experimentally. A new
fuzzy change detection method is proposed which measures the
changes in the membership values of the spectral vectors before
and after the change. The method is mathematically proved to
be efficient while experiments confirm the results. Comparison of
the proposed method with the available literature proves it to be
superior in terms of giving fuzzy results, working unsupervised,
processing the changes locally, and not needing prior information
about the image contents.
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Figure 5: The results of applying maximum likelihood on the
query regions shown in Figure 4. (a) Euclidean. (b)Mahalanobis.
(c) LPRE.

Acknowledgement
We would like to appreciate the valuable discussions and sugges-
tions made by professor Y. Kosugi and professor M. Nakamura
from Tokyo Institute of technology. We also wish to thank the
Iranian Remote Sensing Center (IRSC) for providing us with the
remote sensing images used in this paper. The first author also
wishes to thank Ms. Azadeh Yadollahi for her encouragement and
invaluable ideas.

5. REFERENCES

[1] A. Abadpour and S. Kasaei, “A new parametric linear adap-
tive color space and its pca–based implementation,” in The
9th Annual CSI Computer Conference, CSICC, Tehran, Iran,
2004, pp. 125–132.

[2] J. R. Anderson, E. E. Hardy, J. T. Roach, and R. E. Witmer,
“A land use and land cover classification system for use with
remote sensor data,” United States Government Printing Of-
fice, Washington, 1976.

[3] G. Andre, L. Chiroiu, C. Mering, and F. Chopin, “Building
destruction and damage assessment after earthquake using
high resolution optical sensors. the case of the gujarat earth-
quake of 26, 2001,” Unknown IEEE Conference., 2003.

[4] K. M. Bergen, D. G. Brown, J. R. Rutherford, and E. J.
Gustafson, “Development of a method for remote sensing of
land–cover change 1980–200 in the ufs north central region
using heterogeneous usgs luda and noaa avhrr 1km data,” in
Proceedings, International Geoscience and Remote Sensing
Symposium, Toronto, CA, 2002.



Figure 7: Result of the proposed multi–spectral fuzzy change detection method applied on the images shown in Figure 3.

Figure 6: Result of the proposed segmentation method applied on
the image shown in Figure 3–(a).

[5] L. Bruuzzone and D. F. Preito, “A bayesian approach
to automatic change detection,” in Proceedings of the
IEEE 1999 Int. Geoscience and Remote Sensing Symposium
(IGARSS99), vol. 3, Hamburg, Germany, 1999, pp. 1816–
1818.

[6] L. Bruzzone and R. Cossu, “Analysis of multitemporal
remote–sensing images for change detection: Bayesian
thresholding approaches,” University of Trento, Depart-
ment of Information and Communication Technology, 38050
Povo- Trento (Italy), Tech. Rep. DIT-02-0031, 2003.

[7] M. J. Canty, I. Niemeyer, and Q. B. Truong, “Change detec-
tion with multispectral satellite imagery: Application to nu-
clear verification,” in Proceedings of the International Sym-
posium on Spectral Sensing Research, ISSSR 2001 (CD-
Rom), Quebec City, 2001.

[8] X. Dai and S. Khorram, “Development of a new automated
land cover change detection system from remotely sensed
imagery based on artificial neural networks,” in Proceedings
of 1997 IEEE International Geoscience and Remote Sensing
Symposiums (IGARSS’97), Singapore, 1997, pp. 1029–1031.

[9] C. S. Fischer and L. M. Levinen, “Monitoring california’s
hardwood rangelands using remotely sensed data,” in Pro-
ceedings of the Fifth Oak Symposium, Oak Woodlands, 2001.

[10] D. Gering, “Linear and nonlinear data dimensionality reduc-
tion,” MIT Area Exam, http://www.ai.mit.edu/people/ ger-
ing/areaexam/, 2002.

[11] K. Honda, N. Sugiura, and H. Ichihashi, “Robust local prin-
cipal component analyzer with fuzzy clustering,” in IJCNN
2003 Conference Proceedings, 2003, pp. 732–737.

[12] A. Hyvrinen and E. Oja, “Independent component analysis:
Algorithms and applications,” Neural Networks, vol. 13(4–
5), pp. 411–430, 2000.

[13] J. M. Leski, “Fuzzy c–varieties/elliptotypes clustering in re-
producing kernel hilbert space,” Fuzzy Sets and Systems, vol.
141, pp. 259–280, 2004.

[14] A. M. Massone, F. Masulli, and A. Petrosini, “Fuzzy clus-
tering algorithms and landsat images for detection of waste



Table 1: Comparison of the proposed method with the literature.
Method Multi–spectral Non Model–based Local Spatial Unsupervised Fuzzy
Yamamoto et. al.[26]

√ √
–

√
– –

Kathleen et. al.[4] –
√

– – – –
Nakamura et. al.[17] – – –

√
– –

Matsuoka et. al.[16] –
√

– – – –
Bruzzone et. al.[6] –

√
– – – –

Dai et. al.[8] – – – – – –
Canty et. al.[7]

√ √
–

√
– –

Wiemker et. al.[25]
√ √

– –
√

–
Qiu et. al.[18] –

√ √ √
– –

Mitomi et. al.[16]
√

– – – – –
Andre et. al.[3] – – – – – –

Proposed Method
√ √ √ √ √ √

areas: A comparison,” Advances in Fuzzy Systems and Intel-
ligent Technologies, pp. 165–175, 2000.

[15] M. Matsuoka and F. Yamazaki, “Application of the damage
detection method using sar intensity images to recent earth-
quakes,” in Proceedings of the International Geoscience and
Remote Sensing Symposium, IEEE,, 2002, pp. CD–ROM.

[16] H. Mitomi, M. Matsuoka, F. Yamazaki, H. Taniguchi, and
Y. Ogawa, “Determination of the areas with building damage
due to the 1995 kobe earthquake using airborne mss images,”
in IEEE International Geoscience and Remote Sensing Sym-
posium, CD–ROM, 2002.

[17] M. Nakamura, M. Sakamoto, S. Kakumoto, and Y. Ko-
sugi, “Stabilizing the accuracy of change detection from ge-
ographic images by multi–levelled exploration and selective
smoothing,” in Proceedings of GIS2003, Vancouver, 2003.

[18] B. Qiu, V. Prinet, E.Perrier, and O. Monga, “Multi–block pca
method for image change detection,” in 12th International
Conference on Image Analysis and Processing (ICIAP’03),
Mantova, Italy, 2003, p. 385.

[19] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image
change detection algorithms: A systematic survey,” IEEE
Transactions on Image Processing (Submitted), 2004.

[20] J. A. Richards, Remote Sensing Digital Image Analysis.
Heidelberg, New york: Springer, 1993.

[21] A. Singh, “Review article: Digital change detection tech-
niques using remotely–sensed data,” International Journal
of Remote Sensing, vol. 10(6), pp. 989–1003, 1989.

[22] J. R. G. Townshend, C. O. Justice, and C. Gurney, “The im-
pact of misregisitration on change detection,” IEEE Trans-
action on Geoscience and Remote Sensing, vol. 30(5), pp.
1054–1060, 1992.

[23] P. S. Tradile and R. C. Conglaton, “A change–detection anal-
ysis: Using remotely sensed data to assess the progression
of development in essex county, massachusetts from 1999 to
2001,” http://www.unh.edu/natural–resources/students.html.

[24] M. Trivedi and J. Bezdek, “Low–level segmentation of aerial
images with fuzzy clustering,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 16(4), p. 589598, 1986.

[25] R. Wiemker, A. Spek, D. Kulbach, H. Spitzer, and H. Bien-
lein, “Unsupervised robust change detection on multispectral

imagery using spectral and spatial features,” in Proceedings
of the Third International Airborne Remote Sensing Confer-
ence and Exhibition, Copenhagen, Denmark, 1997.

[26] T. Yamamoto, H. Hanazumi, and S. Chino, “A change detec-
tion method for remotely sensed multi–spectral and multi–
temporal images using 3–d segmentation,” IEEE Transaction
on GRS, vol. 39(5), pp. 976–985, 2001.

[27] Y. Yanamura and H. Saji, “Automatic registration of aerial
image and digital map for detection of earthquake damaged
area,” in Proceedings of the VIIth Digital Image Computing:
Techniques and Applications, Sydney, 2003, pp. 117–126.

[28] B. Zitova and J. Flusser, “Image registration methods: A sur-
vey,” Image and Vision Computing, vol. 21, pp. 977–1000,
2003.


