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Abstract— Fuzzy objective function—based clustering methods distance function is overlooked in the color image processing
are proved to be fast tools for classification and segmentation |iterature. For example, many authors have usedEtheidean
purposes. Unfortunately, most of the available fuzzy clustering gistance based homogeneity criteria, in the color domain, with

methods are using the spherical or ellipsoidal distances, which . .
are proved to result in spurious clusters, when working on color no explicit proof of its performance [14], [15], [16], [17], [18].

data. In this paper, a general case of clustering is discussed and alt is proved that thdinear partial reconstruction errofLPRE),
general method is proposed and its convergence isqved. Also, it  results in a proper likelihood measure for processing natural

is proved that the FCM and the FCV methods are special cases of color images [19]. In this methodology, the likelihood of the

the proposed method. Based on the general method, a special Cas§actor @ to the cluster is defined aw,(¢) = ||77(5— o —

for color image processing is proposed. The clustering method ,_ . S . . : .
is based on a likelihood measure, and isrpved to outperform (c - 77)”' where, ' shows the direction of the first principal

the Euclidean and the Mahalanobis distances, in color fields. component and|z|| denotes the normalized; norm. The
Based on the proposed color clustering method, a new fast fuzzy comparison of the LPRE with the conventioraliclidean

segmentation method is proposed and isrpved to be highly and Mahalanobisdistances, has proved its superiority, both
efficient. Comparison of the results with the FCM, poves the i terms of likelihood measurement and homogeneity deci-
superiority of the proposed segmentation method. sion [20]. In fact, the Euclidean and the Mahalanobis distances
lead to spurious likelihood and homogeneity decisions in
color fields [20]. Thus, the FCM, the HCM, and the PCM,
As a non-hierarchical clustering method, fuzzy clusteringwhich are based on the Euclidean distance measurement),
has proved to be efficient in clustering a set of given vectoege theoretically inappropriate for color clustering. The same
into a few homogenous groups [1]. The fuzzy clustering iRappens for the GK, GG, and FEC methods, (which use the
becoming more popular because it producescitiEp results Mahalanobis distance).
when needed [2]. Also, fuzzy clustering is less prone to falling The idea of reducing the color space dimension is not a new
into local optima than the crisp clustering algorithms [3].  idea; many researchers have reported benefits of illumination
The idea of fuzzy clustering came from thdard C- coordinate rejection [21]. As a quadratic dimension reduction
Means(HCM) method proposed bRuspini(1969) [4]. Dunn tools, theprinciple component analysig®CA) [22] is widely
(1973) [5] generalized the minimum-variance clustering praised in signal processing, statistics, and neural networks. The
cedure to a FuzzySODATA clustering techniqueBezdek fuzzy extension of the PCA is not wide spread in the literature.
(1981) [6] generalize®unns approach, by defining the fuzzi- In [23] the authors proposed an Euclidean distance based
ness concept, and proposed fhazzy C-Mean&CM) algo- definition for the fuzzy covariance matrix. In [24] the authors
rithm. An extension to the FCM is thBustafson—Kesg@K) embed the fuzziness idea to the definition of what they call
method [7], which uses the covariance matrix of the data the scatter matrix. Here we propose and prove a unifying
capture ellipsoidal properties of the clustevkahalanobisdis-  definition for the FPCA.
tance). After that, th&ath—-GevéGG) method used the same ll. PROPOSEDMETHOD
distance [8]. Other contributions in this field, include fhezy i
c—varietie$FCV) andfuzzy c—elliptotypé5CE) [9], fuzzy c— A. Fuzzy Principal Component Analysis(FPCA)
spherical shells [10], clustering algorithms based on volume Assume, performing the PCA transform on the set of
criteria [11] and fuzzy and possibilistic shell clustering [12]vectors #;,i = 1---N, while the samples are members
In 1993, KrishnapuramandKeller proposed therobabilistic of the discrete fieldd = {$i|z' = 1---n}. This situation
fuzzy C—mearfBCM) clustering method [13]. Although, PCM happens when we are working on color vectors, which are
adds more noise robustness to the FCM, but it uses the samsgetitions of the vectors available i = (Nas5 U {0})3.
definition of the Euclidean distance between the points améence, we are facing the PCA problem for the set of fuzzy
the clusters. vectors{(¢;; p;)|i = 1---n}, wherep; equals the number of
Any clustering method is based on the membership valuegpetitions ofJd; (the histogram). Assume the general problem
computed in terms of a distance function [1]. Although, thef finding the principal components diZ;; pi|i = 1---n},
color clustering is an inherently ambiguous task, because when not restricting)_ , p; = 1. Here, as we are only
the edge blurring [3], but the importance of choosing a propeoncerned with the zero and one—dimensional representation

I. INTRODUCTION



of the data cloud, we will derive the formulation fgrand C. General Clustering Algorithm

@1 (but the same method leads to the computation of other ] )
principal components as well). All objective functions in Assume the _gen_eral clus_termg problem sta’\ted as min-
the PCA theory are of the formA(z,) = S0, Qz, (%1), |m|nzmg Cthe objectlve_ funcuoq defined asT(‘X,_<I>) =
where,Qz. (7;) is a quadratic function. Assuming the case of-i—1 2-j—1 Pfj Dij» Which describes the best choice of clus-
repeated vectors, the objective function changed(s,) = t€ring the data pointst = {7, ---Z,} into ¢ clusters de-
S piQz. (6;). Thus, it is reasonable to define the objectiv€®"0ed by® = {¢: - ¢c}. Here,p;; is the fuzzy membership
functions in the fuzzy domain as\(7.) = ", piQz. (7). of 7 to the jth cluster andD;; is the dlstancg betwgen this
too. Note that the case gf; = 1 leads to the same non—Point and the cluster. Assume that;; = ¥(Z;, ¢;) is the
fuzzy definition. Also, the assumption o™ p; = 1 is _approprlaf[edlstance function for the vector ge_ometry under
not important, because it shows itself as a constant scalifffyestigation. Note that urldler thedistance function, we have
factor, (not affecting the minima). The objective functio?ii < Dij andpi; oc D for p = 1---m,p # 4. Here,
for the expectation vector in the crisp domain is defined &% IS the defining parameters of théh cluster according to
Qz. (%) = ||F — T, [22]. Thus, the fuzzy expectation isthe general cluster model. Before working on the solution

the minima of the objective function defined as, () = of the main objective function, we will discuss a special
S pil|& — |2, Assigning the derivative of\,(7,) in Case: The FCM, models each cluster with a single vector
=1 't o . o o

terms of Z, to zero, results i = X7, p;@;/S%,pi. The (@5 = {7;}), defining thel function as the squared Euclidean
objective function for the crisp first principal direction isdistance between the given vector and the cluster center.
the direction of the maximum deviation or equivalently thd N€ key point of the proposegeneral fuzzy clusterifGFC)
direction of minimum one—dimensional reconstruction errof!90rithm is the deep relation between the cluster model and
defined asQz, (%) = |7 — 77 — #(Z — )@||? [22]. Thus in the cluster tuning function. Note that for a set of given points,

the fuzzy domain, we should minimize the objective functiof{’® €xpectation vector, minimizes the sum of the squared
defined asA;(#.) = S, pill@ — 7 — & (& — i)T||2. Ak Euclidean distances. Assume that 'Fhe funcflbr'tunes the
gebraic derivation of the objective function and incorporatinﬁlUSter model¢; to bet fit the points, meaning that for
the size constraint on the principal componenfig,(|> = 1), he fuzzy setX = {(fﬂi;*Pi)ﬁ = 1:"”} of XeCtOfS,qﬁ =
leads toA ;(Z,) = 7, pill# —f||2 —#,C 7., where,C is the T(X) is the solution for* = arg, mln{%pi?(xia ¢l}- The2n,
fuzzy covariance matridefined asy""_ | p;(Z; — i) (# —#7)’. L(X) = E{X} is the solution for¥(z,7) = [|& — il|>.
As the first term in the objective functiony{™, p:|# — 1|2, Here_,E{X} stands for t_he fuzzy expectation of a fuzzy set.
is not a function ofz., thus, A;(Z,) is minimized, when Turning bgck to the main problem, assume that V\_/e have the
the second term,#{ C'%,), is maximized. Using the methoddual functions¥(-) andT(-). We propose an algorithm that
of Lagrange multipliers for embedding thé{#,|| = 1 con- Convergesto a mlqlmal point of thg main obj_ect[ve functlpn,
straint, we should maximize the objective function defined ds at least one exists. Now, rewrite the objective function
Ar(@,) = #.0%, + M||Z,|? — 1). Differentiating the new as J(X,®) = 370 A;, with A; = 370, pit Dy;. Also,
objective function in terms of’, and assigning the result to@ssume that we have fixeld;; and we are trying to decline
zero, we havel'z, = A%,. Thus,Z, is an eigenvector of/, (X, ®) by working onp;;. As the only restriction om;; is
resulting inA;(#,) = \. Thus, the direction of the first fuzzy the normality condition'(i, 3°7_, pi; = 1), for i # i’ there
principal component is the eigenvector @f corresponding to 1S N0 connection betweep;; andp; ;. Thus, decliningA;s
the largest eigenvalue. It can be easily proved, (using the saifi@ependently, results in declination gf.X, ®). Having in
method), that other principal directions correspond to oth&ind the normality constraints, minimizing; is a weighted
eigenvectors of”' sorted by the eigenvalues in a descendin@owered sum m|n|m|zellt|on, dlscusseq in Section 1I-B. Hence,
fashion. the result isp;; = D;;"~"/ >;_, D;,™ " . Note that, during
B. Weighted Powered Sum Minimization this S“"‘.ge-t](X"I’) IS de_clined,_except fof the case thafs .
are satisfying the equation at first. We will come back to this
Assume the optimization problem to be defined as minkjtyation later. Now, assume rewriting the objective function
mizing the functionA(zy ---2,) = 31, f"w; under the a5 7(x, 3) = Y5, ©;. Here,0; = Y1, piD;;. Assume
assumption off 3", z; = 1. Replacingr, =1-3"" | ., i thatwe have fixeg;; and we are trying to decling(X, @) by
in the objective function and differelntiating Withlrespect tQuorking onD;;. Declining®; means tuning thgth cluster to
z; for i # p results inz, = w, " /S ,w;, " '. The minimize the overall distances in a fuzzy scheme that can be
normality constraint is satisfied. Putting the result in theolved independently for different clusters, resulting in overall
objective function and and assuming> 1, it is obvious that decline of theJ(X, ®). The solution in this state is clearly
Vp, A < wy. Also, note that the case of setting all equal obtained by using th& function as¢; = Y({(7:,pj})|i =
to zero, except for:, = 1, leads toA = w,. Hence, having 1---n}). Again, theJ(X, ®) can never increase in this state.
in mind that the gradient oA gets zero just once, while the (Its constancy shows that all the clusters have been in the
value of A at that point is smaller than some marginal pointdest place, according to the special distance functioh
the acquired result leads to the global minima of the problem the proposed clustering algorithm, these two consecutive
in hand. stages are repeated, while the stationarity condition is met: (a)




computep;; values according to th& function and (b) tune of the proposed method. While for Figures 1-a, 1-b, and 1-c,
the clusters according to théfunction. Note that during these the results of the two methods are almost the same, both in
two stagesJ(X, ®) never rises and the case that it remainthe spatial domain and the spectral domain, considering the
constant in two consecutive stages, results in its being consteggults on Figure 1-d is important. The FCM has failed to
for all coming stages. Thus, using this method X, ®) is distinguish between the two red and yellow cloths, because of
going towards a minimum point, and never gets oscillatetheir close spectral zones. Also, in the Figure 1-e, the FCM
The halting test of the algorithm is easily derived in termbas classified the apple and the cucumber in the same group
of the cluster parameters, not changing. Note that rather thand in the case of Figure 1-g, the FCM has gathered some
FCM, other methods like GK, FEC, and FCV, are special casparts of the chimney and the red ribbon in the same group,

of the proposed general clustering method. also the grass and some parts of the sand. In Figure 1-h, the
) FCM has failed to separate the points belonging to the wall

D. Color Clustering and the kerchief, while in all these cases the proposed method

As stated in Section |, the LPRE distance defined dms resulted perfect. In Figures 1-i and 1-j, there are mistakes
V(e [7,d]) = ||(¢— 1) — ¥ (¢ — 7)d||%, results in a good in the segmentation results of the FCM, in distinguishing the

subjective clustering of color vectors. In this approach thiace and the cloth and classifying the blue shades of the sky in
cluster model is a&ylinder with the central axis having and the windows and the balcony ceils, respectively. In Figure 1-k
parallel with 7. Also, the dual functioril (X) computes the the FCM has not been able to partition the flowers completely,
fuzzy expectation and the first fuzzy principal componen&of compared to the perfect results of the proposed method. Also,
as new values of and#, as discussed in Section IlI-A. It mustinvestigate the poor segmentation results of the salad image
be emphasized that this formulation results in a special caseFigure 1-l, in which the carrot and the vegetables are put
of the FCV method setting = 1 [9]. We propose putting in the same class. Table | shows that the proposed method is
a threshold ) on the changes of the coordinates of clustanost of the times faster than the FCM.
centers as the halting condition, as used generally in the fuzzy
clustering theory [1]. IV. CONCLUSIONS
Although, researchers generally use the Euclidean and the
Mahalanobis—based clustering and segmentation methods, in
Clustering the imagd, into ¢ clusters using the method this paper we proved that the color clusters in typical images
proposed above results in a set ©images.J;,i = 1---c¢ are neither spherical, nor ellipsoidal in ait tested standard
which show the likelihood of each pixel to the each of theolor spaces. A new general fuzzy clustering method is
clusters. Note thaf; satisfiesvz,y : 3.1, Ji(z,y) = 1. Now, proposed for arbitrary shapes of clusters and its convergence
assume @ x p smoothing convolution kernel/. It is clear is proved mathematically. It is proved that the well-known
that M satisfies) " >%_| M;; = 1. Hence, Applying FCM clustering method is a special case of the proposed
to each.J; independently to acquird;, the new membership method. Also, a new fuzzy clustering method is proposed for
maps, also satisfy the normality condition. Thus,i = 1---¢  color images and it is proved to be highly efficient. Also,
can be assumed as the smoothed likelihood to the clustdts. subjective perception is shown to be satisfactory. Based
The main benefit of using; over J; is the smoother resulting on the proposed clustering method, a new fast and efficient
segments. The crisp segmentation result is obtained using fegmentation method is proposed and its performance is eval-
maximum likelihood and we propose to use a simple averagingted.Tthe performance analysis comparison of the proposed
kernel for smoothing. segmentation method and the FCM, proved the superiority of
the FCM in color fields.

E. Color Segmentation

Il1. EXPERIMENTAL RESULTS
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computer with256MB of RAM on a large digital image  The first author wishes to thank Mazadeh Yadollahior
archive, containing professional photographs and standadrdr encouragement and invaluable ideas.
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is clear. Figure 3 shows the segmentation results produced by York: Wiley, 1973. _ . . .
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