
QoS–Constrained Information Theoretic Capacity Maximization

in CDMA Systems

by

Arash Abadpour

A thesis submitted to the Faculty of Graduate Studies

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

The University of Manitoba

Winnipeg, MB, Canada

Copyright c© 2009 by Arash Abadpour



To the concept of friendship.



Contents

Contents i

Abbreviations v

List of Figures vii

List of Tables xiii

Abstract xiv

1 Introduction 1

1.1 Single–Cell Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Multiple–Cell Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Single Cell Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Improvements on the Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 Multiple–Cell Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.4 Fairness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

i



CONTENTS

2 Classical Single Cell (CSC) 25

2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Working on Specific Hyper–Planes . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Bounds on xk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Spotting the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Details of the Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Analysis of Pmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Extensions to Single–Cell 39

3.1 New Single Cell (NSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Maximum Capacity Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Spotting the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 Details of the Proposed Method . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.4 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.5 Fairness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 New Enhanced Single Cell (N+SC) . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Maximum Capacity Share Bound . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Limiting the Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Spotting the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.4 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Application of the Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Typical Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.3 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.4 Approximate Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ii



CONTENTS

3.4 Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Convex Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.2 Concave Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Multiple–Class Systems (MSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5.2 Substitute Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.3 Approximation of the Objective Function . . . . . . . . . . . . . . . . . . 91

3.5.4 Canonical Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5.5 Addition of Other Constraints . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5.6 Details of the Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . 94

3.6 Generalized MSC (MSCανLi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6.1 Generalizing the MSC to the MSC⋆ . . . . . . . . . . . . . . . . . . . . . 95

3.6.2 Solving the MSC⋆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.6.3 The Correction Function ρ(χ) . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.6.4 Application of ρ(χ) to Solving the Generalized Problem . . . . . . . . . . 104

4 Multiple–Cell Problem (MC) 105

4.1 Substitute Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 Details of the Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Experimental Results 115

5.1 Classical Single Cell (CSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.1 Effects of Different Parameters . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.2 Fairness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 New Single Cell (NSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 New Enhanced Single Cell (N+SC) . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4 Application of Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5 Incorporation of Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Multiple–Class Systems (MSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.7 Generalized Multiple–Class Systems (MSCανLi) . . . . . . . . . . . . . . . . . . . 161

5.8 Multiple–Cell Systems (MC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

iii



CONTENTS

6 Conclusions 177

Bibliography 184

A Theorem 199

B Publications 204

B.1 Conference Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

B.2 Journal Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

B.3 In Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

C MATLAB Code Documentation 207

C.1 Single–Cell Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

C.1.1 Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

C.1.2 Solver Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

C.1.3 Facilitating Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

C.2 Multiple–Cell Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

C.2.1 The Static Class MCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

C.2.2 The Dynamic Class MCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

iv



Abbreviations

AWGN Additive White Gaussian Noise

CDMA Code Devision Multiple Access

CSC Classical Single Cell

CSCa Approximation–enabled Classical Single–Cell

DS–CDMA Direct Sequence Code Devision Multiple Access

HDR High Data Rate

MC Multiple–Cell Multiple–Class

MINLP Mixed Integer Nonlinear Programming

MSC Multiple–Class Single–Cell

M1SC Multiple–Class Single–Cell solved using Linear Programming

M2SC Multiple–Class Single–Cell solved using Quadratic Programming

MSCανLi Generalized Multiple–Class Single–Cell

NSC New Single Cell

N′SC Internal Variant of the NSC utilized within the N+SC

N′SC+c Internal Variant of the NSC utilized within the N+SC

v



CONTENTS

NSCa Approximation–enabled New Single–Cell

NSCf− New Single–Cell with Concave Utility Function

NSCf+ New Single–Cell with Convex Utility Function

NSCα New Single–Cell with the Utility Function f(x) = xα

N+SC New Enhanced Single Cell

N+SCa Approximation–enabled New Enhanced Single Cell

OFDMA Orthogonal Frequency Division Multiple Access

OPC Opportunist Power Control

QoS Quality of Service

SIR Signal to Interference Ratio

TDMA Time Division Multiple Access

vi



List of Figures

1.1 (a) Location of different mobile stations in a sample cell. (b) The corresponding

sequence of reverse gains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Multiple–cell system model used in this thesis. . . . . . . . . . . . . . . . . . . . 18

2.1 Typical shape of f(x) defined in (2.43) with values of parameters as β1 = 1.0082,

β2 = 1.6728, β3 = 5.7966, and β = 2.2310. . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Details of the algorithm CSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Some of the extensions to the CSC developed in this thesis. . . . . . . . . . . . . 40

3.2 Details of the algorithm NSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Details of the algorithm N+SC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Investigation of the properness of (3.74). (a) The two sides of (3.74). (b) The

relative error induced by using the approximation given in (3.74). The shaded

area shows the working interval for the cases of the NSC and the N+SC. . . . . . 61

3.5 Possible shapes of the function f(x) defined in (3.78) in the circumstances dis-

cussed in Section 3.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Typical structure of ∆(xj , t− xj). . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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Abstract

Code Division Multiple Access (CDMA) has proved to be an efficient and stable means of

communication between a group of users which share the same physical medium. Therefore, with

the rising demand for high–bandwidth multimedia services on mobile stations, it has become

necessary to devise methods for more rigorous management of capacity in these systems. While

one of the substantial techniques for regulating capacity in CDMA systems is through power

control, the mathematical complexity of the regarding model complicates the analysis and the

subsequent implementation of useful generalizations and extensions.

In this thesis, the classical problem of capacity optimization in the reverse link of a CDMA

system is analyzed. Here, it is shown that the classical formulation of the problem is solvable

through examination of a finite set of transmission powers, for which closed forms are given.

Although, this method leads to a more accurate and a faster solution to the classical problem,

it is noted that the classical problem is very prone to yielding partial solutions in which the

calculated system capacity is not realizable in a practical setting. The developed mathematical

model, however, is shown to be applicable to more general definitions of the problem.

The major part of this thesis is the analysis of the capacity optimization problem equipped

with increasing sets of constraints and utility functions. These features are incorporated into the

problem in order to produce solutions deployable in practical systems. Cases of multiple–class

systems are also analyzed and more accurate system models are implanted in the problem as

well. Subsequently, after single–cell systems are carefully examined, one chapter is devoted to

the analysis of multiple–cell systems. These systems are modeled based on an inclusive set of

parameters.

xiv



For each problem, a solver is developed and experimental results are discussed. Some of the

material presented in this thesis has been previously published in a number of articles, as listed

in Appendix B.
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Chapter 1

Introduction

An essential means of regulating the capacity in CDMA systems is through effective transmission

power assignment [1]. The necessity of this issue arises from the fact that, for example, in DS–

CDMA systems there is universal frequency reuse, meaning that the same carrier frequency and

spectral band are shared in all the cells [2]. Hence, it is important to devise a method which is

capable of assigning optimal transmission powers to the mobile stations in accordance with a set

of practical constraints as well as a properly–devised objective function (see a survey in [3]). In

fact, it has been shown that proper control of the transmission powers of the mobile stations in

a cellular system can result in the control and suppression of the interference in the system [4].

The basic approach to the capacity optimization problem is to define a set of constraints and

then to find the solution which satisfies all of them at equality. One example of this approach is to

find the set of transmission powers which provide a given (often identical) Signal to Interference

Ratio (SIR) for all the mobile stations in a cell [5]. For example, in [6], the researchers work

on capacity design and call admission control analysis based on a fixed–SIR approach (also

see [7, 8]). A comprehensive and generalized treatment of this topic can be found in [9]. It is

worth to mention that the fixed–SIR approach is implemented through power control carried

out by the individual mobile stations. In this framework power messages transmitted by the

base station instruct each mobile station to power either up or down [10]. For a thorough review

of control strategies and feedback mechanisms in power control refer to [11].
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In an early paper, Zander [12] discussed the idea of equalizing the SIR of the signals received

from different mobile stations at the base station in a cellular radio system. The suggested

target–tracking approach guarantees the same quality of service for all the mobile stations in

the system and has been investigated thoroughly in the literature (see [9, 13, 14, 15, 16, 17]

as examples among other works). In a system which utilizes the fixed–SIR approach, as the

mobile stations undergo the deterioration of the signal received from them at the base station,

due to deep fades for example, they increase their transmission power. Equalization of the SIR

also helps in dealing with the near–far effect, by enabling the mobile stations far from the base

station to achieve the same quality of service that those close to it do [18]. The fact that all

the mobile stations in such a system are provided with the same capacity is a direct reflection

of the voice–only nature of the earlier CDMA networks [19].

For more work on enhancing system performance through finding optimal values of the

system parameters, including the minimum SIR bound, refer to [20] and the references therein.

This work is also different from the approaches which model the problem as a non–cooperative

game [21, 22, 23, 24] and also the Opportunist Power Control (OPC) approaches such as [25,

26, 27]. In the framework of the OPC, the mobile stations increase their transmission power

as they acquire a better link to the base station (also called “multiuser diversity” [28]). Here,

we do not consider the issue of optimizing the hand–offs and the underlying trade–off between

their cost compared to connection quality either (for details refer to [29, 30]). Furthermore,

relatively similar concepts are discussed in capacity optimization for Orthogonal Frequency

Division Multiple Access (OFDMA) systems. For example, among other works, joint analysis

of channel allocation, modulation level and power control in a multiple–cell OFMDA network is

discussed in [31] (refer to [32] for more work on multiple–cell OFDMA systems and to [33, 34]

for the analysis of the single–cell ones).

With the introduction of multimedia services to wireless CDMA communications, the goal is

no more to provide fixed capacity to all the mobile stations [35], but to maximize the aggregate

capacity given a set of constraints [1]. In fact, the addition of other types of services to the con-

ventional voice–only communication channels has urged the need for more control over the rates
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at which different mobile stations transmit [36]. This is necessary in order to maximize system

performance measures including the aggregate capacity [18]. For an early coverage of manag-

ing multiple–rate systems [37] through maintaining fixed chip–rate and different transmission

powers refer to [38, 39].

The communication channel, through which the data is transfered, can be defined from differ-

ent perspectives. In the literature, this channel is defined as, either the physical medium through

which the electromagnetic waves are propagated, or the radio channel which also includes the

receiver and the transmitter antennas, or the digital channel which includes the modulation and

demodulation stages as well [40]. Here, we consider the definition of the communication channel

as the radio channel (also see [41]).

The maximization of the capacity, in this thesis, is carried out at the reverse link (uplink),

because this link is often the limiting link [42, 43] which has to satisfy stringent requirements [44]

as well. In fact, the focus on the reverse link in many of the works cited here, as well as in the

present work, is in accordance with what the authors of [45] mention to be the consideration of

“the majority of the literature”. For example, it is suggested that in the presence of an ideal

power control mechanism and hard hand–off, the reverse link limits the system capacity [18].

However, it has to be emphasized that a consensus on this issue does not exist in the literature

and some researchers work on the forward link as well (for an example of work on the forward link

refer to [46]). For an early coverage of the capacity of the reverse link, accompanied by results

gathered from field tests, refer to [47] (also see [48]). Among different channels on the reverse

link, this thesis concentrates on the traffic channels, due to the more demanding conditions they

need to satisfy in order to establish stable communications [49].

The rest of this chapter is organized as follows. First, in Section 1.1, the literature of

capacity analysis at the reverse link in single–cell systems is analyzed. Then, in Section 1.2,

multiple–cell systems and the challenges of capacity optimization in them are discussed. This

discussion essentially addresses the implications of modeling CDMA systems within multiple–

cell frameworks as opposed to the more simplistic single–cell approaches. The chapter then

follows with a thorough investigation of the parameters of single–cell CDMA systems as well as
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those of the multiple–cell ones, in Section 1.3. This investigation yields SIR models which are

used throughout this thesis in formulating different optimization problems. At the end of this

chapter, in Section 1.4, the structure of the rest of this thesis is briefly discussed.

1.1 Single–Cell Systems

The maximization of the capacity of the reverse link in this thesis is achieved through controlling

the transmission powers of the individual mobile stations. Here, the analysis is first carried out

in a single–cell system, by assuming that either there is only one cell in the system or that the

activity in other cells can be modeled as fixed interference to the current cell [50].

In this thesis, the term capacity is defined as the rate of transmission of each mobile station.

Here, to relate the transmission power to rate, an information theoretic approach is taken [51]

(also see [52, 53]) and Shannon’s theorem is used [1, 54]. The adoption of the maximum bound

given by Shannon’s theorem is based on previously–developed models (see [1, 54, 55] for exam-

ple). This issue will be discussed in more detail later in this section.

The system–wide information theoretic capacity of CDMA systems was first analyzed in [50]

and then developed further for multi–user networks in [56]. While these works focus on the set

of all capacities, more recent research has benefited from the advances in matched filters [1] and

the aggregate capacity has been analyzed [55, 57, 58]. In these works, assuming a sub–optimal

coding scheme, the mapping between the SIR and the throughput is determined by the coding

strategy.

Subsequently, research in the field has benefited from capitalizing on the assumption of

Shannon’s capacity. Although, Shannon’s theorem gives the maximum bound for the capacity,

the existence of coding strategies such as Turbo Coding makes Shannon’s bound practically

achievable [1]. It should be emphasized that, here, the assumption of Additive White Gaussian

Noise (AWGN) [59] is necessary for the adoption of the maximum bound on the system capacity

as given by Shannon’s theorem [60].

The analysis of the capacity–maximization problem for a particular group of mobile stations

is given in many works. However, many of these methods do not have a natural generalization
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when different groups of customers are incorporated into the problem [61]. For example, in [62]

the authors work on a two–class system in which voice users are guaranteed a minimum quality

and data users are provided with the highest possible system capacity.

A general category of the research done on optimizing the transmission powers of the reverse

link is based on maximizing capacity–oriented, often similarly–defined, objective functions, sub-

ject to different sets of constraints (also see [63]). For example, in [9, 13, 64, 65], the authors

work on minimizing the transmitted power subject to a minimum SIR requirement, an approach

suitable for fixed–SIR voice–only communications. In [66], the authors work on a similar problem

with the difference that they formulate the objective function as representing the throughput for

delay–tolerant users. In fact, the major difference between these works is the constraints they

use and subsequently how much realistic their solutions become, as a result of the utilized con-

straints. For example, in [67], the only constraints are a minimum guaranteed SIR and bounds

on individual transmission powers. There, first, the problem is constituted as minimizing the

aggregate received power. Then, it is reformulated as maximizing the aggregate capacity. A

similar problem is looked at in [68], where the authors minimize the aggregate received power

in a multiple–cell system subject to power and SIR constraints, where the assignment of the

mobile stations to the cells is to be decided as well. A similar problem is treated in [69, 70] in

a stochastic framework.

In a recent paper, Oh and Soong [71] developed a method for optimizing the aggregate

reverse link capacity of a CDMA system given a set of constraints. In that work, the study is

carried out in a single cell for aggregate system capacity maximization. The constraints of that

problem include minimum SIR, maximum and minimum bounds for transmission powers, and

maximum bound on the aggregate received power. In fact, one of the main contributions of [71]

is the addition of the minimum SIR constraint to the problem. That has primarily been an

attempt for resolving the issue of impractical solutions produced earlier, as reported in [57, 58].

For simplicity of reference, throughout this thesis, the problem analyzed in [71] will be addressed

as the Classical Single Cell problem (CSC).

One of the major contributions of the work performed in [71] is the reduction of the dimension

of the search space. In fact, in a cell which contains M mobile stations, the search space for
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the CSC is essentially M–dimensional. However, Oh and Soong showed that the search can

be limited to a multiple of M number of one–dimensional intervals. For that, they utilized a

numerical optimization procedure [71].

It is worth to mention that while the approach taken in [71] considers the identity function

as the utility identifier, there are sound arguments for the appropriateness of concave utility

functions for data communication [72]. For instance, it is suggested that the application of

concave utility functions in the aggregate–capacity maximization problem leads to intrinsically

more fair capacity distributions [73]. This issue will be treated in Section 3.4.

In contrast with the classical model for the SIR, used in [71] among other works, this thesis

also investigates the incorporation of more advanced models, suggested in [57, 74, 75] and

elsewhere. These models, however, directly alter the structure of the SIR and thus demand the

development of new models to tackle the resulting problems. Here, we also consider different

classes of services for different users [76] to collectively set up a problem encompassing an

inclusive set of features.

Thorough research has shown that the classical formulation of the capacity maximization

problem given in [71] has to be restructured in order to contain more explicit bounds on the un-

fairness of the system (see the discussions given in [58] for more details). Chapter 3 discusses the

new additions to and the alterations of the CSC into new forms which exhibit better properties

in terms of fairness, among other factors.

1.2 Multiple–Cell Systems

There are substantial differences when CDMA systems are modeled within a multiple–cell frame-

work (see [45] and the references therein). Among these differences are the presence of inter–cell

interference [47], as well as the trade–offs to be dealt with regarding the strength of the pilot

signals and the issue of cell placement [45]. In this thesis, we address the task of transmission

power assignment in a multiple–cell system when an inclusive SIR model is utilized.

In dealing with the challenges of producing the solution to a multiple–cell problem, some

researchers have suggested reduction methods which use approximations in order to reduce a
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multiple–cell one to an imaginary single–cell system [77]. This is because one of the main

challenges of dealing with the problem in a multiple–cell setting is the fact that interference to the

signal received from any mobile station at the corresponding base station includes more than just

the transmission powers of all the mobile stations in that same cell. In fact every mobile station

in the system can potentially be a source of interference to every other one. From a mathematical

point of view, as will be shown later, the primary challenge with the multiple–cell model for

the SIR is the existence of extra terms in its denominator. These terms represent entities from

outside the corresponding cell. Collective address of these terms plus the background noise as

the new imaginary background interference can potentially lead to producing a rough solution

for a multiple–cell system through using single–cell solvers. However, the implementation of

this scheme demands proper design of an iterative procedure. Among other issues, concerns

over stability and convergence of such iterative methods are of grave significance (this issue is

fully covered in [78] for a similar problem). The challenging aspects of iterative optimization

of the capacity include the need for proper handling of hand–offs [79]. In addition, in some

implementations, such as the GSM for example, delays of as long as 500ms in the measurement

and feedback loop can exist [11]. The integrity and stability of the optimization method in these

long–delay scenarios adds to the challenges of using iterative approaches.

Another simplistic approach to direct reduction of a multiple–cell problem into a single–

cell one is through the use of the “loading factor”. This technique assumes that the intra–cell

interference arriving at the base station of a cell can be safely approximated by a fraction of

the inter–cell interference in the same cell. In other words, it is suggested that there exists a

constant factor δ which when multiplied by the inter–cell interference, can in fact approximate

the intra–cell interference [80]. This reduction technique leads to a problem which can be solved

by a modified version of a single–cell solver developed later in this thesis. Here, δ is the loading

factor, also called the “inter–cell interference factor” (also denoted by g). Equivalently, it is

suggested that the intra–cell interference can be taken care of by adding [δM ] imaginary mobile

stations to a cell containing M mobile stations [81].

In this thesis, we use a multiple–cell model which explicitly addresses the inter–cell interfer-
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ence without using rough estimations such as the ones mentioned in the above. The algorithm,

however, takes advantage of the loading factor, and other approximations, in order to simplify

some of the constraints.

The issue of base station assignment is a key factor in optimizing the capacity in a multiple–

cell system [82]. In this thesis, we consider the case of each mobile station being connected

to only one base station chosen by a separate algorithm [83]. Therefore, the aim of this work

is to develop an efficient method for optimizing the transmission powers of the mobile stations

assuming that the assignment is already given or that it will be optimized by an algorithm which

uses the method developed here within an assignment optimization procedure.

One of the major categories of the research done on power optimization in multiple–cell

systems approaches it from a game–theory perspective [76, 82, 84] (also see [23, 85, 86]). For

example, in a 2004 paper [79] (an extension to the single–cell work by the same team presented

in [87]), the authors aim at achieving a fixed–SIR for all the mobile stations through distributed

calculation of the optimal transmission powers. To do so, a closed–loop control mechanism is

designed which, for each mobile station, uses a linear combination of its transmission power

and a capacity–related term as the cost function. The capacity term in that paper is defined

using the Shannon formulation and the paper partly adopts the definition of its cost from earlier

works [72, 88].

A comprehensive study of the application of Game Theory–based methods adopted from the

field of economics in multiple–cell power control is given in [88]. The aim of these methods is to

set up an optimization process through which each mobile station will independently maximize

its own utility [88]. The definition of utility in this category is sometimes unique to each paper.

The actual implementation of the game is different in different works as well. For example, in [75],

the authors extend a centralized game–theory based approach to a decentralized one through

implementing a penalty function which will encourage the mobile stations to move towards the

point in which every mobile station meets its individually–assigned SIR while minimizing the

overall interference to the neighboring cells. In [89] game–theory concepts are utilized for a joint

8



Chapter 1. Introduction 1.2. Multiple–Cell Systems

analysis of the uplink and the downlink simultaneously, where fixed SIR is achieved in a multi–

rate system. For more applications of methods borrowed from game theory and microeconomics

refer to [90, 91, 92].

In [93, 94], the authors investigate utility–based power allocation for the forward link (down-

link) in a multiple–cell CDMA network. The analysis in that work first suggests a solution for

the underlying single–cell problem and is then generalized to a two–cell scenario. Subsequently,

the authors suggest a signaling–based approach to finding a solution to the problem when a

more general setting, containing more than two cells, is to be dealt with. In [77] the authors

utilize a model similar to the one implemented in this thesis for the forward link. That work

considers the two problems of resource allocation and base station assignment simultaneously,

through joint study of powers as well as the utilized rates. The resulting non–convex optimiza-

tion problem is then dealt with using a distributed algorithm which is based on dynamic pricing.

An earlier work on the joint consideration of the transmission powers and the spreading gains

for the reverse link in a single–cell setting can be found in [95] as well. The approach taken in

that paper is then generalized in [96] to multiple–cell systems. Similar to the case of the early

coverage of the CSC [71], the formulation utilized in many of the works cited in the above results

in all the mobile stations being forced to transmit at the lowest possible rate while the mobile

station which is the closest to the base station will be transmitting at orders of hundreds of times

more of capacity (a Time Division Multiple Access (TDMA)–style strategy). This situation is

extensively analyzed in [57, 58] and is known to result in a very unfair system, in which guar-

antees of quality of service are hard to achieve. Nevertheless, taking a similar approach, in [97],

the authors work on the joint optimization of transmission powers as well as the corresponding

scheduling. The distributed forward link optimization approach presented in that work operates

in a multiple–cell system and is based on the idea of switching off the transmission in cells which

show poor performance. That approach is assumed to contribute to increasing the aggregate

capacity through decreasing the intra–cell interference.

In another attempt, and in continuation of the work done earlier [98, 99], the authors of [100]

suggest Mixed Integer Nonlinear Programming (MINLP) as the solver for both single–cell and
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multiple–cell problems. There, the challenge of base station assignment is taken into considera-

tion as well and the system is modeled at the reverse link. Other works on capacity maximization

for the forward link include [101, 102]. In both these cases a maximum bound on the transmis-

sion rates is not considered and thus these approaches yield similar TDMA–type outcomes (for

more discussion on the topic refer to [77] and also IS–856 system specifications [103] as well as

High Data Rate (HDR) systems [42, 104]).

It is important to emphasize that the work presented in this thesis produces the solution in

polynomial time. This solution is often given as a closed form, or alternatively proved to be a

member of a finite set, the members of which are given in closed form. Some other algorithms

developed in this work utilize numerical search for finding the optimal solution, in which case

the algorithm is always proved to be able to find the solution, or an approximation of it, in finite

time. This is in contrast to works such as [77] which do not guarantee to always generate the

optimal solution.

1.3 System Model

The discussion about the system model utilized in this thesis starts in Section 1.3.1 where a

single–cell system model is described. Then, a set of new features adopted from more recent

works is presented in Section 1.3.2. These improvements are applied to the single–cell model

in order to generalize it and rewrite in the context of multiple–cell scenarios, as presented in

Section 1.3.3. The single–cell system presented here is adopted from previous works such as [57].

1.3.1 Single Cell Systems

The maximum bound on the capacity of a single point–to–point communication link is given by

the Shannon theorem as [1] (also, see [55]),

C = B log2 (1 + γ) . (1.1)
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Here, B is the bandwidth and γ is the SIR of the communication link. In the rest of this

thesis we omit B knowing that it is a constant multiplier. Hence, here, relative capacities are

analyzed. For convenience, the term “relative” will be omitted as well. We emphasize that,

in order to produce numbers with the proper unit, the vertical axis of the graphs which carry

capacity–related terms should be read as relative to B.

Assume that there are M mobile stations with reverse link gains of g1, · · · , gM , all located

in the same cell and communicating with the same base station. Throughout this thesis, we

will address the sequence g1, · · · , gM as the vector ~g. Similarly, for any other variable which is

defined for a set of mobile stations or cells, we will use a similar vector abbreviation, given that

it is clear in the context what is being addressed. The assumption of fixed ~g which only models

the path–loss, is based on the assumption that the system is analyzed in time slots of Ts, where

Ts ≫ 1
W

(W is the bandwidth), and that the coherence time of the most rapidly varying channel

is greater than Ts. Therefore, in each time slot, ~g can be assumed to be constant [57]. It is also

worth to mention that the typical time interval during which the shadowing factor in nearly

constant for a mobile station is a second or more [2]. Therefore, the assumption of constant ~g

is in fact valid for algorithms with run–times significantly less than a second. Furthermore, for

low to moderate data rates, the inter–symbol interference can be dealt with through channel

equalization [41] and thus, multi–path fading can be considered to be flat (constant for all

symbols) as well [11]. These assumptions are used in other works, such as [105], as well, where

it is assumed that the path gains, the background noise, and the inter–cell interference (in case

of multiple–cell systems) are fixed during the time it takes for the solver to produce a solution.

In Section 1.3.3 a more general definition of the reverse gains for multiple–cell systems will be

given.

We assume that the mobile stations are ordered in such a way that,

g1 > · · · > gM , (1.2)
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and define the power at which the i–th mobile station is transmitting as pi, for which we have,

0 ≤ pi ≤ pmax, (1.3)

for a given pmax. While, here, all the mobile stations are assumed to be limited by the same

maximum transmission power, this condition can be relaxed in favor of a more general model in

which pi is bounded by pmaxi . If this model is to be utilized, the condition given in (1.2) should

change to,

g1p
max
1 > · · · > gMp

max
M . (1.4)

Although this generalization does exist, for notational convenience, in many cases in this thesis

we consider constant pmax for all the mobile stations, unless specified otherwise.

Here, the work is carried out in a circular cell of radius R = 2.5km. Subsequently, in single–

cell models, for the mobile station i at the distance di from the base station only the path–loss

is considered, and modeled as [106],

gi = Cdni . (1.5)

For early works on this path–loss model consult [107, 108] and for a comprehensive review of this

subject refer to [109]. Here, C and n are constants equal to 7.75× 10−3 and −3.66, respectively,

when di is in meters. Equivalently, with di in kilometers, C will equal 1.2283× 10−13 [82] (also

see [74, 110]).

Using the notations defined in the above, with a background noise of I, the SIR for the

signal transmitted by the i–th mobile station as perceived by the base station is modeled as

(see [12, 111] for more details),

γi =
pigi

I +
M
∑

j=1,j 6=i

pjgj

, (1.6)

12



Chapter 1. Introduction 1.3. System Model

Hence, using Shannon’s formula, the capacity of the i–th mobile station is modeled as,

Ci = log2 (1 + γi) = log2

I +
M
∑

j=1

pjgj

I +
M
∑

j=1,j 6=i

pjgj

. (1.7)

Using (1.7) for computing the aggregate capacity of the system, we have,

C(~p) =
M
∑

i=1

Ci = log2



I +

M
∑

j=1

pjgj





M

M
∏

i=1



I +
M
∑

j=1,j 6=i

pjgj





. (1.8)

Here, ~p = (p1, · · · , pM ) is the vector of all the decision variables of the optimization problem.

Using the definition of the objective function given in (1.8), the CSC uses the constraint

given in (1.3) as well as two other ones, to be described here. The first constraint defines a

minimum guaranteed SIR, as,

γi ≥ γ,∀i. (1.9)

Furthermore, in the CSC, in order to suppress interference from one cell to the others, the

aggregate received power at the base station is limited as,

M
∑

i=1

pigi ≤ Pmax. (1.10)

These constraints can be collectively written as,































γi ≥ γ,∀i,
M
∑

i=1

pigi ≤ Pmax,

0 ≤ pi ≤ pmax,∀i.

(1.11)
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Figure 1.1: (a) Location of different mobile stations in a sample cell. (b) The corresponding sequence
of reverse gains.

The base parameters used in this study are γ = −30dB, I = −113dBm, Pmax = −106dBm,

pmax = 23dBm (pmax = 30dBm is used in some other works [85]), M = 10, η = 0.3, µ = 1
1.5 ,

and α = 0.7. These values are partly based on the data given in [74, 82, 85, 112] (the parameters

η, µ, and α are defined in this thesis and will be clearly described in Chapter 3). Note that here

the values of I and Pmax comply with the notion of limiting the blocking probability, as defined

in [78]. In any experiment, when a parameter is different from the list given in the above, it is

mentioned.

The execution times given here are measured on a Pentium IV 3.00GHz personal computer

with 1GB of RAM, running Windows xp and MATLAB 7.0.

Figures 1.1–(a) and 1.1–(b) show the location of different mobile stations and the sequence of

reverse gains, respectively, in a sample set generated as described in the above. The surrounding

circle in Figure 1.1–(a) shows the border of the cell.

1.3.2 Improvements on the Model

In this section, some improvements on the model described in Section 1.3.1 are discussed. The

addition of these improvements to the model will be discussed in Section 1.3.3.
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It is suggested that at any time each mobile station is only active with the probability equal

to ν. Therefore, a more appropriate model for γi, originally defined in (1.6), will be as,

γi =
pigi

I + ν
M
∑

j=1,j 6=i

pjgj

. (1.12)

In [74], a proper value for ν in voice systems is suggested to be 0.4. It is worth to mention that

another method for modeling ν is the assumption that a cell with M mobile stations in fact only

contains [Mν] mobile stations [81]. In this thesis we will use the formulation given in (1.12)

instead.

It is also suggested that a more accurate model for the SIR is to write,

γi =
pigi

I + α
M
∑

j=1,j 6=i

pjgj

. (1.13)

Here, α is a constant depending on the characteristics between the spreading codes of the mobile

stations. The values of α = 1 and α = 1
3 for synchronous and asynchronous mobile stations are

suggested, respectively [57].

While the formulation given in (1.6) models the system at chip level, there is a straight–

forward extension of this work to symbol level capacity optimization through writing [75, 82,

84, 113],

γi =
Lpigi

I +
M
∑

j=1,j 6=i

pjgj

. (1.14)

Here,

L =
W

R
> 1, (1.15)

is the spreading gain of the CDMA system, in which formulation W is the chip rate and R is

the data rate. This formulation can also be extended to multi–rate systems. In doing so, the
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SIR model is extended by assuming that the data–rate for the i–th mobile station is denoted by

ri. Therefore,

γi =
Lipigi

I +

M
∑

j=1,j 6=i

pjgj

, (1.16)

where,

Li =
W

ri
. (1.17)

In a typical system, W = 106Hz and R = 104bits/second, thus producing L = 100 [85] (L = 128

is used in [83]). Note that (1.14) is a special case of (1.16) in which Li = L,∀i.

Another model, similar to (1.13), in which the cross–correlation of different codes has been

taken into consideration models the SIR at the output of the matched filter for the i–th code

as [114],

γi =
piNi

M
∑

j=1,j 6=i

pj
ρ̃2
ij

Nj
+ I

. (1.18)

Here, ρ2
ij is the constant cross–correlation between the i–th and the j–th codes and Ni is the

spreading gain for the i–th mobile station. This model, although slightly different from the one

used in this thesis, can be rewritten in order to have the same structure analyzed here and thus

is solvable through a similar methodology. Here, we do not cover this model.

The formulation given in (1.6) is based on the assumption that the entire power transmitted

by the i–th mobile station, here denoted by pi, is effectively received at the base station, after it

is attenuated by the environment. More proper models, such as the one proposed in [115], and

further developed in [116], consider the factor ζi as the “ratio of useful received power”. This

factor represents the impairments caused by multiple path, non–constant standing wave ratio,

and transmission non–linearities as well as imperfect equalization [116]. In order to properly

model the effects of these phenomena, an auto–interference term is added to the denominator
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of (1.6) while the nominator is multiplied by ζi, collectively yielding,

γi =
ζipigi

I +
M
∑

j=1,j 6=i

pjgj + (1− ζi)pigi

. (1.19)

The factor ζi decreases as di, the distance between the i–th mobile station and the base

station, increases. In other words, if the mobile station is extremely close to the base station

then the corresponding ζi is very close to one. Similarly, as a mobile station moves towards the

edge of cell, the corresponding value of ζi approaches ζmin. Nominal values for ζmin are given

as 0.75 and 0.9 and ζi is modeled as a linear function of di [116],

ζi =
ζmin − 1

R
di + 1. (1.20)

Here, R is the radius of the cell and di is inside the range (di ≤ R).

Through collective incorporation of (1.12), (1.13), (1.16) and (1.19) into the SIR model

given in (1.6), the resulting formulation will better represent the physical phenomenon under

investigation. To do so, the SIR of the signal transmitted by the i–th mobile station as perceived

by the base station will be modeled as,

γi =
Liζipigi

I + αν
M
∑

j=1,j 6=i

pjgj + (1− ζi)pigi

. (1.21)

The issue with the formulation given in (1.21) is that the existence of the factors αν and ζiLi

and the term (1− ζi)pigi disrupts the application of many available approaches as well as some

early methods developed in this thesis.

In Section 1.3.3 the SIR model presented here is implemented within the framework discussed

in Section 1.3.1 in order to yield a multiple–cell capacity maximization problem.
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Figure 1.2: Multiple–cell system model used in this thesis.

1.3.3 Multiple–Cell Systems

A schematic depiction of the multiple–cell model developed in this section is given in Figure 1.2.

This model is the extension of the single–cell model presented in Section 1.3.1, deployed to a

multiple–cell scenario after the additions discussed in Section 1.3.2 are applied to it. The model

presented in this section is also the generalized form of what is given in [79]. That model is

based on the ones given in [75, 84, 89]. Models similar to the one discussed here are used in

many other works as well (including [88]). To the best knowledge of the author, the multiple–cell

model presented in this thesis is the most inclusive model available in the literature.

Assume that there are K cells, with Mk mobile stations in the k–th cell, k = 1, · · · ,K,

making a total of,

M =
K
∑

k=1

Mk, (1.22)

mobile stations. We denote the parameters corresponding to the i–th mobile station in the

k–th cell, where i = 1, · · · ,Mk, with the subscript ki (when needed, this mobile station will
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be addressed as MSki). For example, the i–th mobile station in the k–th cell transmits at the

power pki and the path gain from this mobile station to the base station at the j–th cell is

denoted by gjki. For convenience, we use gki when gkki is referred to. We also assume that the

i–th mobile station in the k–th cell is at distance dki from the k–th base station and define

ζki using a doubly–indexed extension of (1.20). The underlying assumption here is that every

mobile station is connected to only one base station at any given moment (the closest to it in

terms of geographical distances) [83].

As opposed to the single–cell model presented in Section 1.3.1, in which gi only represented

the path–loss, in this section a more inclusive model for the ~g is adopted. From the point of

view of the underlying physical model, the quantity gki can be written as [83],

gki = hkifki. (1.23)

Here, 0 < hki < 1 represents the slow–varying channel gain, excluding any fading, and fki

denotes fast time–scale Rayleigh fading between the i–th mobile station in the k–th cell and the

corresponding base station [109]. The assumption here is that ~h does not change significantly

during the time–scale of the analysis. Similarly, ~f is assumed to be constant during each data

frame but varying from one frame to another. In fact, the elements of ~f are assumed to follow

unit mean Rayleigh distributions, or, equivalently, a Rayleigh distribution with the parameter

equal to,

σ =

√

2

π
. (1.24)

Furthermore, the formulation for hki is given as [83],

hki =

(

C

dki

)n

Y −1
σ . (1.25)

Here, dki is the distance from the i–th mobile station to the base station and C = 0.1 and n = 2.5

for low density environments are suggested [109] (dki is in meters). Also, log(Yσ) is modeled as
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a zero–mean Gaussian random variable with the standard deviation equal to σ̃. Here, σ̃ = 0.1

is used [83]. In dynamic settings, ~f is produced at each time step, while Yσ is calculated every

20 time steps, when operating at the refresh rate of 1kHz [83].

In order to model the frequency reuse pattern in the system, we define θkk′ as one if the cells

k and k′ share the same frequency band and zero otherwise. As a marginal case, in DS–CDMA

systems, all the mobile stations communicate at the same frequency band. In other words, the

system employs a frequency reuse of one. Therefore, every mobile station is interfering with

every other one. Here, in the model, we consider this extreme case. Other cases, in which

less number of cells operate on the same frequency band, can be modeled through the same

formulation by setting the corresponding θkk′ equal to zero when the frequency bands used in

the two cells k and k′ do not collide [11]. Note that, in any setting, θkk is equal to one for all

values of k. Although, here, ~θ represents the frequency reuse pattern, and thus its elements

are assumed to hold binary values, the assumption of binary–valued ~θ is not essential to the

derivations and the subsequent analysis. Therefore, these values can also be used to incorporate

other non–binary features, such as the “orthogonality factor” [77], into the model.

Defining the background noise at the k–th cell as Ik, we employ θkk′ within the framework

of an SIR model following the same methodology as (1.21). Doing so, the SIR for of the signal

transmitted by the i–th mobile station at the k–th cell as perceived by the base station in that

cell is modeled as,

γki =
Lkiζkipkigki

Ik + αν





K
∑

k′=1,k′ 6=k



θkk′

Mk′
∑

i′=1

pk′i′g
k
k′i′



+

Mk
∑

i′=1,i′ 6=i

pki′gki′



+ (1− ζki) pkigki

. (1.26)

Similar models are used in [77, 83, 101, 102], among other works. Note that, in [83] only the

effects of the mobile stations at the first–tier neighborhoods are included in the model, while

here, the entire network is taken into consideration.

As the equivalent to (1.7) in multiple–cell systems, the relative capacity of the i–th mobile
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stations in the k–th cell is defined as,

Cki = log2 (1 + γki) . (1.27)

Using this model, the general multiple–cell capacity maximization problem solved in this thesis

is composed as maximizing,

C =
K
∑

k=1

Mk
∑

i=1

fki (Cki) , (1.28)

subject to,















































0 ≤ pki ≤ pmaxki ,∀i, k,

γki ≥ γminki ,∀i, k,

Cki ≤ Cmaxki ,∀i, k,

αν

K
∑

k′=1



θkk′

Mk′
∑

i′=1

pk′i′g
k
k′i′



 ≤ Pmaxk ,∀k.

(1.29)

Here, the constants γminki , Cmaxki , and pmaxki are the minimum SIR, the maximum capacity, and

the maximum transmission power of the i–th mobile station in the k–th cell, respectively, and

fki(·) is the utility function of this mobile station.

Note that the model presented in (1.26) does cover many other single–cell models discussed

in this thesis. In order to carry out the reduction, K has to be set equal to one and some of

the system parameters may have to be ignored. Moreover, through setting θkk′ = δk=k′ and

replacing αν with αν(1 + δ), the approach of using virtual mobile stations will be simulated.

Therefore, the author argues that to his best knowledge the multiple–cell formulation presented

and then solved in this thesis is the most general model available in the cited works as well as

others not mentioned here.
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1.3.4 Fairness Analysis

The analysis of the fairness of the solution to the optimization problem investigated throughout

this thesis is an important issue (also see [57, 58]). As will be shown later, for example in Sec-

tion 3.1, through imposing constraints specifically designed to control the range of the capacity

offered to each mobile station the system can be made more fair. To examine this situation,

numerical measures for modeling fairness in the system are needed. Therefore, the subtractive

unfairness of the system is defined as the difference between the highest and the lowest capacities

offered in the system,

f = max {Ci} −min {Ci} . (1.30)

Similarly, the ratio unfairness of the system is defined as the ratio between these two capacities,

f̃ =
max {Ci}
min {Ci}

. (1.31)

Note that f and f̃ are measures of unfairness for the whole system. In contrast, as a measure

of fairness specific to each mobile station, we define the capacity share of mobile station i as,

C̃i =
Ci
C
. (1.32)

In a cell which contains M mobile stations, the closer the values of C̃i are to M−1, the less

dispersed the range of the capacities is. In this context, the values of C̃i constitute a measure

of fairness for the system.

These measures will be used throughout this thesis in order to analyze the fairness of the

solutions produced by different algorithms.

1.4 Structure of this Thesis

This thesis is essentially composed of different methods building upon their predecessors, each

one bringing a new improvement to the task of optimizing the transmission powers in a CDMA
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system. The analysis starts from the classical problem which contains a minimal list of con-

straints as well as a simplistic objective function. This problem is thoroughly discussed in

Chapter 2. As a result, the mathematical basis for the analysis of several other generaliza-

tions is developed. In addition, the performance of the classical problem is comprehensively

investigated (in Section 5.1).

As expected from the reports already available in the literature, the classical formulation

produces unrealistically unfair systems. Therefore, the classical problem is gradually redefined

in Chapter 3 in order to be equipped with more advanced features. This process starts in

Sections 3.1 and 3.2 through the addition of more constraints to the problem. This process

provides hard limits on the unfairness of the system and thus makes the results applicable in

practice. However, as more features are included in the system, the complexity of the solver

increases and no straight–forward method for the addition of new features and constraints into

the problem exists. In other words, the addition of a new constraint is only possible through

the complete analysis of the new problem from bottom up, and not through a procedure which

would build on the existing analysis of the previous problem. Thus, in Section 3.3 a new set of

approximations is developed. These approximations produce substitute solvers for the available

problems and at the same time provide the opportunity for the algorithmic integration of more

advanced features into the problem.

Taking advantage of the developed approximations, the addition of utility functions is in-

vestigated in Section 3.4 and it is observed that concave utility functions, which were out of

reach in the previous methodology, result in promising systems. Subsequently, multiple–class

systems are addressed in Section 3.5 and, finally, as the last addition to the single–cell problem,

the underlying SIR model utilized in the multiple–class model is also improved (in Section 3.6).

Using the multiple–class problem formulated at the end of Chapter 3, the model developed

in Section 1.3.3 is implemented in Chapter 4 to produce a multiple–cell multiple–class problem.

This problem is subsequently solved using some of the mathematical tools developed earlier as

well as a few others developed in Chapter 3.
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The thesis then continues with comprehensive analysis of all the developed problems in

Chapter 5, where different experiments are designed and carried out for each problem. Finally,

Chapter 6 outlines the conclusions of this research.
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Chapter 2

Classical Single Cell (CSC)

This chapter contains the work carried out on the problem of maximizing the capacity of the

reverse link in a single–cell system. The problem analyzed here is the CSC, as introduced

in [71, 117]. This section is organized as follows. First, in Section 2.2, we develop a set of linear

transformations in order to simplify the CSC formulation. Then, the behavior of the problem in

specific hyperplanes is investigated, resulting in a theorem given in Section 2.3. The procedure

is then followed in Section 2.4, where the solution is localized to a smaller search space than

what has been suggested before, thus producing new tighter bounds on the decision variables.

Then, in Section 2.5, we carefully analyze the problem and give a theorem which is used in

Section 2.6 in order to propose a new algorithm for accurately finding the solution to the CSC.

The coverage of the problem then follows in Section 2.7, where analysis of the computational

complexity of the proposed algorithm is presented. Finally, Section 2.8 carries out an analysis

on the significance of the value of Pmax.
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2.1 Problem Definition

As mentioned in Section 1.3.1, the CSC problem is defined as finding,

arg~p max



I +
M
∑

j=1

pjgj





M

M
∏

i=1



I +
M
∑

j=1,j 6=i

pjgj





, (2.1)

given,

0 ≤ pi ≤ pmax,∀i, (2.2)

pigi

I +

M
∑

j=1,j 6=i

pjgj

≥ γ,∀i, (2.3)

M
∑

i=1

pigi ≤ Pmax. (2.4)

2.2 Linear Transformation

The first step in this work is to propose a linear transformation which gives an alternative

representation of the single–cell problem which is easier to work with. This will also lead to a

more convenient solver. In doing so, first, we rewrite (2.3) as,

pigi

I +
M
∑

j=1

pjgj

≥ ϕ =
γ

γ + 1
,∀i. (2.5)

Notice that, 0 < ϕ < 1. Now, substituting,

xi =
pigi
I
, (2.6)
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into (2.1) gives,

∆(~x) =



1 +
M
∑

j=1

xj





M

M
∏

i=1



1 +
M
∑

j=1,j 6=i

xj





, (2.7)

where ~x = (x1, · · · , xM ). For the sake of analytical convenience, we transform (2.7) into a more

convenient form, shown below, which is to be minimized.

Φ(~x) =

M
∏

i=1



1 +
M
∑

j=1

xj − xi







1 +
M
∑

j=1

xj





M
. (2.8)

This of course assumes that the maximum is finite which is a reasonable assumption. Now,

we find the new representations of the constraints using the transformation shown in (2.6).

Substituting (2.6) into (2.2) gives,

0 ≤ xi ≤ li, li =
pmax
I

gi,∀i. (2.9)

Note that as ~g is a vector of descending elements, so is~l. Here, to comply with the history of the

problem, we have assumed that pmax is fixed for all the mobile stations. The analysis, however,

never in fact depends on this assumption, except for proving that the elements of~l are sorted in

a descending fashion. Therefore, the analysis given here also applies to the case in which pmax

is not fixed for all the mobile stations, in which case we will sort the mobile stations in terms

of the corresponding values of pmaxi gi. Here, pmaxi is the maximum transmission power of the

i–th mobile station. Hence, the solution given here is more general than the previous discussion

given in [71, 117].
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Substituting (2.6) into (2.5) gives,

xi

1 +
M
∑

j=1

xj

≥ ϕ, ∀i. (2.10)

Also, (2.4) becomes,

M
∑

i=1

xi ≤ Xmax, Xmax =
Pmax
I

. (2.11)

To summarize, using the transformation depicted in (2.6), the single–cell problem is reduced

to minimizing Φ(~x), given in (2.8), subject to,







































0 ≤ xi ≤ li,∀i,
xi

1 +
M
∑

j=1

xj

≥ ϕ, ∀i,

∑M
i=1 xi ≤ Xmax.

(2.12)

2.3 Working on Specific Hyper–Planes

Here, we investigate the behavior of the problem in specific hyperplanes. This investigation

leads to a theorem at the end of this section.

We analyze the behavior of the problem in the hyperplane defined as,

M
∑

i=1

xi = T , (2.13)

for different values of T . In any such hyperplane, the single–cell problem reduces to finding the

minimum of,

Φ(~x) = (1 + T )−MΦT (~x), (2.14)
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where,

ΦT (~x) =
M
∏

i=1

(1 + T − xi) . (2.15)

Therefore, for fixed T , the problem which should be solved is the minimization of ΦT (~x). In

other words, the single–cell problem can be rewritten as finding T for which the minimum value

of ΦT (~x) is the smallest possible.

In the hyperplane indicated in (2.13), the constraints have more convenient formulations.

For example, the inequality given in (2.11) changes into a limitation for T as,

T ≤ Xmax. (2.16)

Also, (2.10) in combination with (2.9), yields,

ϕ(1 + T ) ≤ xi ≤ li,∀i. (2.17)

Now, the problem is to minimize (2.15) given that ~x lies on the hyperplane defined as (2.13).

The vector ~x should also satisfy (2.17). Also, T should not become larger than Xmax. We know

that if the ~x satisfying (2.13) is the minimizer of (2.8) then it is the minimizer of (2.15), but not

vice versa.

Assume that ~x is the minimizer of (2.15) and consider two distinct values of i and j. Then,

rewrite (2.15) in terms of xi and xj .

ΦT (~x) = (1 + T − xi) (1 + T − xj)
M
∏

k=1,k 6=i,j

(1 + T − xk) , (2.18)

where the last term (which contains M − 2 factors) depends neither on xi nor on xj . Hence, for

minimizing ΦT (~x), the product of the first and second terms has to be minimized. Here,

xj = T − S − xi, (2.19)
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S =

M
∑

k=1,k 6=i,j

xi. (2.20)

Now, the function which should be minimized is,

f(xi) = (1 + T − xi) (1 + T − xj) . (2.21)

It can be shown that,

f(xi) = −
(

xi −
T − S

2

)2

+ (1 + T )(S + 1) +

(

T − S
2

)2

. (2.22)

Remembering that,

xi −
T − S

2
=

1

2
(xi − xj) , (2.23)

it is proved that for minimizing ΦT (~x), xi and xj should be as far from each other as possible.

Now, assume that ~x is a solution to (2.15) that satisfies all the constraints. Furthermore,

assume that there are values of i and j, for which there is a value of δ such that replacing xi

and xj with x⋆i = xi + δ and x⋆j = xj − δ still satisfies all the constraints. Note that this new

point is still on the same hyperplane. Also, note that,

x⋆i − x⋆j = xi − xj + 2δ, (2.24)

which means that if the sign of δ is the same as that of xi − xj , then x⋆i and x⋆j have a larger

absolute difference than that of xi and xj . Based on what was described in the above, this new

~x will produce a lower value of ΦT (~x), which is a contradiction to what was assumed before.

Using this, a theorem is stated.

Theorem: In the solution to the single–cell problem, there can be no pair of xi and xj

which can increase their absolute distance. We call this pair an extending one if they can do so

and the situation is called an extension. Therefore, at the optimal point, the inequalities for ~x

(see (2.17)) should always stop its elements from increasing the distance among themselves.
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Proof : This issue will be presented through a graphical visualization. Before that, we know

that Φ(~x) is independent of the permutations of ~x. Also, rather than the bound for T given

in (2.16), the other conditions are on individual elements of ~x (see (2.17)). Furthermore, in

these constraints, the minimum possible values for all the elements ~x are identical and the set of

maximum possible values is given as~l, the elements of which are sorted in a descending scheme.

Hence, it is possible to show the range of xi as,

xi : [ϕ(1 + T ) · · · ← × → · · · li] , (2.25)

where × shows the approximate location of xi in the interval and the arrows indicate possible

movements. Here, we give names for three situations of xi. In doing so, xi is called to be at

the beginning, at the middle, or at the end if xi = ϕ(1 + T ), ϕ(1 + T ) < xi < li, and xi = li,

respectively.

Now, we use the theorem presented earlier and the proposed visual representation in order

to prove the first lemma in [118]. The Lemma states that in the optimum solution there is at

most one xi at the middle. Assuming otherwise, there are xi and xj , both at the middle and

i < j. In this situation, there are two possibilities, xi ≥ xj or xi < xj . The first case leads to

xi : [ϕ(1 + T ) · · · · · · · · · · · · · · · × → · · · · · · · · · · · · li]

xj : [ϕ(1 + T ) · · · · · · · · · ← × · · · · · · · · · · · · · · · lj ]
,

which is an extension. The later case is similar,

xi : [ϕ(1 + T ) · · · · · · ← × · · · · · · · · · · · · · · · · · · · · · · · · li]

xj : [ϕ(1 + T ) · · · · · · · · · · · · × → · · · · · · · · · · · · · · · lj ]
�

This visually intuitive proof is compared with the one given in [71, 117].

The second lemma in [118] states that in the optimum solution, if there is one xi at the

middle, all xj for j > i will be at the beginning. Again assume two distinctive xi and xj , where

i < j and xi is at the middle. Now, if xj is at the end, there are two possibilities, namely xi ≥ lj
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or xi < lj . The first one leads to,

xi : [ϕ(1 + T ) · · · · · · · · · · · · · · · · · · · · · · · · × → · · · li]

xj : [ϕ(1 + T ) · · · · · · · · · · · · · · · ← ×lj ]
,

which is an extension. The second condition leads to an extension as well, although it is not as

clear as the previous one is. Writing,

xi : [ϕ(1 + T ) · · · · · · · · · × · · · · · · · · · · · · · · · · · · · · · li]

xj : [ϕ(1 + T ) · · · · · · · · · · · · · · · × lj ]
.

and replacing xi and xj gives,

xi : [ϕ(1 + T ) · · · · · · · · · · · · · · · × → · · · · · · · · · · · · li]

xj : [ϕ(1 + T ) · · · · · · ← × · · · · · · lj ]
,

where the extension is trivial.

Lemma 3 in [118] is refers to the xi above the one at the middle. The claim is that if xk is at

the middle and for m < k, xm is at the beginning, then for m < i < k, xi can not be at the end.

Using the lemmas given in the above, the result is that xi should always be at the beginning.

The situation which this lemma refers to is,

xm : [ϕ(1 + T )× · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · lm]

xi : [ϕ(1 + T ) · · · · · · · · · · · · · · · · · · · · · · · · · · · × li]

xk : [ϕ(1 + T ) · · · · · · · · · × · · · · · · · · · · · · lk] ,

which changes into the extendable case of,

xm : [ϕ(1 + T ) · · · · · · · · · · · · · · · · · · · · · · · · · · · × → · · · · · · lm]

xi : [ϕ(1 + T )× · · · · · · · · · · · · · · · · · · · · · · · · · · · li]

xk : [ϕ(1 + T ) · · · · · · ← × · · · · · · · · · · · · lk] .

Proposition 1 in [118] is now concluded; if there is a solution to the single–cell problem then
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it is as,

~x = (l1, · · · , lk−1, xk, ϕ(1 + T ), · · · , ϕ(1 + T )) . (2.26)

Note that there may be need to switch the elements of ~x so that the one at the middle separates

those at the beginning and those at the end.

2.4 Bounds on xk

Equation (2.26) gives the structure of the optimum solution to the single–cell problem. This

equation reduces the number of the unknowns to two. In this section we reduce the size of the

search space by finding appropriate bounds for both k and xk.

Defining,

L =
k−1
∑

i=1

li, (2.27)

we have,

1 + T =
xk + L+ 1

1− (M − k)ϕ. (2.28)

As T is always positive, we should have,

1− (M − k)ϕ > 0→ k > M − 1

ϕ
. (2.29)

The fact that 1− (M − k)ϕ is positive is used in some of the derivations to be presented.

Working on xk ≥ ϕ(1 + T ), given in (2.17), results in,

xk ≥
ϕ(L+ 1)

1− (M − k + 1)ϕ
. (2.30)
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We also have,

k > M − 1

ϕ
+ 1, (2.31)

which makes (2.29) tighter. Similarly, the aggregate power condition gives,

xk ≤ (Xmax + 1) [1− (M − k)ϕ]− L− 1. (2.32)

According to the structure of ~x given in (2.26) and because of (2.17), we should have ϕ(1 +

T ) ≤ lM which gives,

xk ≤ lM
1− (M − k)ϕ

ϕ
− L− 1. (2.33)

To make the bound in (2.33) positive we should have,

k <
1

ϕ
− 1

lM
+ 1. (2.34)

Using (2.31) we have,

M − 1

ϕ
+ 1 < k <

1

ϕ
− 1

lM
+ 1. (2.35)

Therefore, the constraints are abbreviated in two bounds on xk,

xk ≤ min























lk

(Xmax + 1) [1− (M − k)ϕ]− L− 1

lM
1− (M − k)ϕ

ϕ
− L− 1























, (2.36)

and,

xk ≥
ϕ(L+ 1)

1− (M − k + 1)ϕ
, (2.37)
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for those values of k satisfying (2.35). The important fact about the inequalities in (2.35), (2.36),

and (2.37) is that they are both necessary and sufficient.

2.5 Spotting the Solution

It was proved in Section 2.3 that the solution to the single–cell problem is structured as (2.26).

Now, the question is to find the appropriate values of k and xk. Here, we assume that we have

selected a value of k and produce the optimal choices for xk.

We know from what was described in Section 2.4 that it is both necessary and sufficient for

xk to satisfy (2.36) and (2.37). In this section we prove that Φ(~x) has a very specific behavior

in terms of xk (when other elements of ~x are selected as in (2.26)). In fact, we prove that

the minimum value of Φ(~x) happens on a boundary (at a margin). This directly leads to the

two choices given in (2.36) and (2.37) for xk. In this way, the single–cell problem reduces to

checking two values for xk for any value of k (also limited by (2.35)). The importance of this

non–iterative method over the numerical one used in previous works is notable. Furthermore,

while the proposed method produces the exact solution to the single–cell problem, the approach

devised in [71] is only capable of calculating the solution up to some precision.

Equation (2.26) gives,

Φ(~x) =
1

(1 + T )M

[

k−1
∏

i=1

(1 + T − li)(1 + T − xk) ((1− ϕ)(1 + T ))M−k

]

. (2.38)

Using (2.28) and performing routine algebraic manipulation we have,

Φ(xk) = C

∏k
i=1(xk + βi)

(xk + β)k
, (2.39)

where,

C = (M − k)ϕ(1− ϕ)M−k, (2.40)
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βi =











L+ 1− (1− (M − k)ϕ) li i = 1, · · · k − 1

L+ 1

(M − k)ϕ i = k
(2.41)

β = L+ 1. (2.42)

Note that, here, Φ(xk) is referred to, as opposed to Φ(~x), because we are dealing with the

optimal choice of xk and hence the other elements of ~x are calculated based on xk. Therefore,

the problem is to minimize,

f(x) =

∏k
i=1(x+ βi)

(x+ β)k
, (2.43)

where βi and β are given as (2.41) and (2.42), respectively. Note that with these definitions we

have,

0 < β1 < β2 < · · · < βk−1 < β < βk. (2.44)

Also, we have,

k
∑

i=1

βi − kβ = (1− (M − k)ϕ)

[

1

(M − k)ϕ + L
1− (M − k)ϕ

(M − k)ϕ

]

> 0. (2.45)

Figure 2.1 shows a sample function f when k = 3 with values of βi and β given in the caption

are used. Note that, in this example, it is evident that in any interval on the positive side, the

minimum value of the function happens at the boundaries. In Appendix A it is proved that

this is in fact the case for any choice of the parameters βi which satisfy (2.44) and for which

∑k
i=1 βi − kβ is positive. Using this result, in the next section, we propose an algorithm that

computes the value of Φ in less then 2M candidate points and finds the optimal solution.

2.6 Details of the Proposed Algorithm

Figure 2.2 shows the detailed structure of the proposed algorithm.
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Figure 2.1: Typical shape of f(x) defined in (2.43) with values of parameters as β1 = 1.0082, β2 =
1.6728, β3 = 5.7966, and β = 2.2310.

1. Compute Xmax using (2.11), ϕ using (2.5), and ~l using (2.9).

2. For all k satisfying (2.35), do the followings,

(a) Compute L using (2.27).

(b) Compute maxk and mink using (2.36) and (2.37),

respectively.

(c) If not maxk ≥ mink ≥ 0 then go to the next value of k, else

continue (goto 2d).

(d) Do the following lines for the two values of xk = mink and

xk = maxk, separately. Store both Φ and the values of xi
for each trial.

• Compute T using (2.28).

• Set xi = li for i = 1, · · · , k − 1.

• Set xi = ϕ(1 + T ) for i = k + 1, · · · ,M.

• Compute Φ using (2.8).

3. Find the smallest Φ produced at the above and retrieve the

corresponding values of xi.

4. Compute ~p, using (2.6), and return that as well as C.

Figure 2.2: Details of the algorithm CSC.
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2.7 Computational Cost

Analysis of the proposed algorithm shows that its computational cost equals,

τ = 8εM2 + (16ε+ 4)M + 10, (2.46)

flops. Here, εM is the number of values of k for which line 2d in the algorithm depicted in

Figure 2.2 is executed. Empirically, for M ≥ 10 we have ε ≤ 0.25. The worst case happens

when ε equals one, for which we have,

τCSC = 8M2 + 20M + 10, (2.47)

flops. As an example, substituting M = 100 results in the computational costs of 82K and 20K

flops, for ε = 1 and ε = 0.1, respectively. Here, ε = 1 shows the worst–case, while the other

value of ε represents a likely event. On a 1Gfps (one Giga flops per second) processor it takes

less than 0.1ms to do the calculations of the proposed algorithm when M equals 100 (0.08 ms

and 0.02ms for the worst and the average cases, respectively). As a general measure note that

here the computational cost is of order O(M2).

2.8 Analysis of Pmax

The only place in the algorithm stated in Section 2.6, where the actual value of Pmax is important

is in line 2b. Using (2.11), and based on (2.36), we can show that the actual value of Pmax may

have an impact on the final solution only if,

Xmax + 1

lM
ϕ < 1→ Pmax < pmaxgM

γ + 1

γ
− I. (2.48)

It is in fact expected that increasing Pmax from certain limits will make (2.4) redundant.
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Extensions to Single–Cell

Thorough work on the CSC, alongside the analysis of the results presented in Section 5.1, leads

to the suggestion that including more constraints in the problem could result in better properties

for the solution. In this chapter this approach is first followed in the design of the problem New

Single–Cell (NSC), discussed in Section 3.1, and then in the development of problem N+SC,

discussed in Section 3.2. Then, in order to enhance the efficiency of the proposed algorithms,

new approximations are employed, resulting in newer versions of all the developed algorithms

in Section 3.3. These algorithms are marked with the superscript a, denoting “approximation”.

The work then continues with incorporating convex and concave utility functions, thus increasing

the practicality of the problems, as discussed in Section 3.4. Finally, the case of multiple–

class systems is analyzed in Section 3.5 and generalized multiple–class systems are discussed in

Section 3.6.

Some of the extensions to the classical single–cell problem developed in this thesis are sum-

marized in Figure 3.1. This figure depicts the different constraints and how they produce newer

problems.

3.1 New Single Cell (NSC)

Analysis of the CSC reveals that almost always there is a single mobile station in the cell

transmitting at a capacity about fifty times as much as the others, this issue is mentioned
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maxC(~p) = log2



I +
M
∑

j=1

pjgj





M

M
∏

i=1



I +
M
∑

j=1,j 6=i

pjgj





given,
0 ≤ pi ≤ pmax,∀i,
γi ≥ γ,∀i,
M
∑

i=1

pigi ≤ Pmax,
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Figure 3.1: Some of the extensions to the CSC developed in this thesis.

by other researchers as well [57, 58]. To resolve this issue, here we add another constraint to

the problem and utilize a method similar to what was described in Chapter 2. As a result,

the problem New Single–Cell (NSC) is produced. It is worth to mention that the unfairness

of the results produced by the CSC was one of the main reasons the authors in [71] devised

the minimum SIR constraint. Here, we show that through adding a maximum bound on the

capacity of each mobile station there will be an implicit limit on the unfairness of the system,

thus resulting in a more practical solution.

This section is organized as follows. First, in Section 3.1.1 the new maximum capacity

constraint is introduced and it is shown how it integrates into the whole problem. Then, in

Section 3.1.2 we show the structural similarity of the NSC to the CSC. As such, we justify that

properties similar to what was proved before for the CSC are still valid. Then, Section 3.1.3 uses

these results to propose an algorithm for solving the NSC. The analysis follows in Section 3.1.4

by discussing the computational cost of the proposed algorithm. Finally, Section 3.1.5 shows

how in fact the new constraint puts a limit on the unfairness of the system in order to distribute

the resources in the system.
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3.1.1 Maximum Capacity Bound

Using (1.7), the constraint given in (1.9) gives,

Ci ≥ − log2(1− ϕ). (3.1)

Therefore, the value of ϕ, and equivalently that of γ, determines a minimum for the capacity of

each mobile station. However, using Taylor Series we know that for a small values of x,

log2(1− x) ≃ −
1

ln(2)
x. (3.2)

Hence, we have the approximate form,

Ci ≥
1

ln(2)
ϕ. (3.3)

This means that ϕ directly imposes a minimum bound on the capacity of each mobile station.

Following the same line of reasoning, we propose to add the constraint given below to those

presented in (1.3), (1.9), and (1.10),

Ci ≤ η,∀i. (3.4)

Here, we will work on (3.4) to show that this constraint will in fact control the unfairness of the

solution.

According to (1.7), and using the linear transformation of the search–space discussed in

Section 2.2, while also using (2.13), the new constraint mandates,

1 + T

1 + T − xi
≤ 2η,∀i. (3.5)

Continuing with (3.5) and defining

ω = 1− 2−η, (3.6)
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We have,

xi ≤ ω(1 + T ),∀i, (3.7)

which is similar to the left side of (2.17) except for the fact that the previous one put an upper

bound on xi, as opposed to the lower bound given in (2.17). Note that ω > ϕ is a necessary

condition for the existence of any solution.

3.1.2 Spotting the Solution

In Section 3.1.1, the NSC was formulated as minimizing Φ(~x), given in (2.8), subject to,















































0 ≤ xi ≤ li,∀i,

ϕ ≤ xi

1 +
M
∑

j=1

xj

≤ ω, ∀i,

M
∑

i=1

xi ≤ Xmax.

(3.8)

To solve this problem, we use the same method of performing the analysis in specific hyperplanes

developed in Section 2.3. The similarity of the structural arrangement of the search space of the

current problem to the one given in (2.17) mandates an optimal ~x which has a structure similar

to (2.26). Note that, here, for some values of i, the maximum bound for xj(j ≥ i) is given

by ω(1 + T ) and not by lj . Nevertheless, the same pyramid–like structure of the search space,

generated by the descending upper bounds, is still valid. Hence, in accordance with (2.26), it is

inferred that the optimal solution to the single–cell problem when the new constraint is included,

is given by,

~x =
(

ω(1 + T ), · · · , ω(1 + T ), lj+1, · · · , lk−1.xk, ϕ(1 + T ), · · · , ϕ(1 + T )
)

. (3.9)

Note the similarity between this vector and the structure of the solution to the CSC given in

(2.26).
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Comparing (3.9) with (2.26) reveals that in the NSC there are two values of j and k which

have to be found while in the CSC we were only faced with k (see Section 2.5). Hence, it is

anticipated that the solver for this problem will be of a higher order (the computational cost of

this algorithm is discussed in Section 3.1.4).

Using (3.9) we have,

1 + T =

xk +
k−1
∑

i=j+1

li + 1

1− [jω + (M − k)ϕ]
=

1

ψ
(xk + L+ 1). (3.10)

Here,

L =
k−1
∑

i=j+1

li, (3.11)

ψ = 1− [jω + (M − k)ϕ] , (3.12)

Note that both ψ and L depend on j and k but not on xk.

Routine derivation shows that in order to fulfill all the constraints we should have,

xk ≤ min



























lk
ω

ψ − ω (L+ 1)
1

1− [ψ < ω]

ψmin

{

1

ω
lj

1

1− [j = 0]
,
1

ϕ
lM , Xmax + 1

}

− (L+ 1)



























, (3.13)

xk ≥ max















(

ψ

ω
lj+1 − (L+ 1)

)

(1− [k ≤ j + 1])

ϕ

ψ − ϕ(L+ 1)















. (3.14)

Here, for any logical statement P , [P ] is one if P holds and zero otherwise [119].

It is informative to investigate the case of large η. Assuming η =∞ leads to ω = 1, in which
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case the maximum constraint in fact becomes trivial. Using (3.12) we have,

ψ − ω = −(M − k)ϕ < 0, (3.15)

and also j = 0. Hence, this case results in (3.13) converting to,

xk ≤ min























lk

(1− (M − k)ϕ) min











1

ϕ
lM

Xmax + 1











− (L+ 1)























, (3.16)

which is identical to the maximum limit in the CSC. Also, (3.14) changes to,

xk ≥ max











((1− (M − k)ϕ) l1 − (L+ 1)) (1− [k ≤ j + 1])

ϕ(L+ 1)

1− (M − k + 1)ϕ











, (3.17)

which is not identical to its counterpart in the case of CSC in its current form. A closer look,

however, reveals that if k ≥ 2 then using (3.11),

L =
k−1
∑

i=1

li ≥ l1 ≥ (1− (M − k)ϕ) l1. (3.18)

Hence, the first term in (3.17) is in fact negative. On the contrary, if k < 2 then k < j+1 which

eliminates the first condition. Hence, (3.17) converts to,

xk ≥
ϕ(L+ 1)

1− (M − k + 1)ϕ
, (3.19)

which is identical the one developed in the case of the CSC. Therefore, as expected, as η tends

to infinity the NSC converges to the CSC.

Substituting (3.9) into (2.8) we have,

Φ(~x) =

(

1 + T − ω(1 + T )

1 + T

)j k−1
∏

i=j+1

(

1 + T − li
1 + T

)(

1 + T − xk
1 + T

)

(3.20)

44



Chapter 3. Extensions to Single–Cell 3.1. New Single Cell (NSC)

(

1 + T − ϕ(1 + T )

1 + T

)M−k

.

Now, using (3.10) we have,

Φ(~x) =
cψ

1− ψ

k−1
∏

i=j+1

(

1
ψ
(xk + L+ 1)− li
1
ψ
(xk + L+ 1)

)(

1
ψ
(xk + L+ 1)− xk

1
ψ
(xk + L+ 1)

)

, (3.21)

Here, c is a constant defined as,

c =
1− ψ
ψ

(1− ω)j(1− ϕ)M−k. (3.22)

Continuing with (3.21) we have,

Φ(~x) = c

∏n
i=1 (xk + βi)

(xk + β)n
. (3.23)

Here, we have n = k − j and,

βi =











L+ 1− ψlj+i i = 1, · · ·n− 1

L+ 1

1− ψ i = n
, (3.24)

β = L+ 1. (3.25)

Notice that,

0 < β1 < β2 < · · · < βn−1 < β < βn, (3.26)

n
∑

i=1

βi − nβ = (n− 1)(L+ 1)− ψL+
L+ 1

1− ψ − n(L+ 1) =
ψ(ψL+ 1)

1− ψ > 0. (3.27)

Hence, according to the theorem given in Section 2.5, it is inferred that the minimum value of

Φ happens when xk accepts one of the boundary values given in (3.13) and (3.14).
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3.1.3 Details of the Proposed Method

Figure 3.2 shows the detailed structure of the proposed algorithm.

3.1.4 Computational Cost

Analysis of the computational cost of the algorithm depicted in Section 3.1.3 shows that it

demands,

τ =
16

3
εM3 +

53ε+ 2

3
M2 − 23εM + 6, (3.28)

flops. Here, ε is the portion of trials for which φ is in fact computed. The worst case, setting

ε = 1, gives,

τ =
16

3
M3 +

55

3
M2 − 23M + 6, (3.29)

flops. However, for a typical system, as described in Section 1.3.1, ε is 0.2. On a 1Gfps (one

Giga flops per second) processor, the proposed algorithm takes less than 6ms when M equals

100 (5.5ms and 0.6ms for the worst case and the bast one). Note that here the computational

cost is of order O(M3) compared to the O(M2) algorithm given for the CSC. In fact, this

was expected because the main “for” loop in Figure 3.2 contains two variables each one ranging

somewhere between 0 andM . In Section 5.2 we show that the acceptable results of this algorithm

compensates for its higher computational cost. Note that the computational cost of the new

algorithm is almost 2
3M times the CSC.

3.1.5 Fairness Analysis

Using (3.4) and (3.6) we know that,

max {Ci} ≤ η = − log2(1− ω), (3.30)
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1. Compute Xmax using (2.11), ϕ using (2.10), ω using (3.6), and ~l
using (2.12).

2. Report ‘‘Error’’ if ω < ϕ.

3. For all j from 0 to M and for all k from j + 1 to M do the

followings,

(a) Compute ψ using (3.12).

(b) If not ψ > ϕ then go to Line 3 and start over for new values

of j and k, else continue to Line 3c.

(c) Compute L as (3.11).

(d) Compute maxx and compute minx using (3.13) and (3.14),

respectively.

(e) If not maxx ≥ minx ≥ 0 then go to Line 3 and start over for

new values of j and k, else continue to Line 3f.

(f) Do the following lines for the two values of xk = minx and

xk = maxx, separately. Store both Φ and the values of xi
for each trial.

• Compute T using (3.10).

• Set xi = ω(1 + T ) for i = 1, · · · , j.
• Set xi = li for i = j + 1, · · · , k − 1.

• Set xi = ϕ(1 + T ) for i = k + 1, · · · ,M.

• Compute Φ using (2.8).

4. Find the smallest Φ produced at the above and retrieve the

corresponding values of xi.

5. Compute ~p, using (2.6), and return them as well as C.

Figure 3.2: Details of the algorithm NSC.
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min {Ci} ≥ − log2(1− ϕ), (3.31)

Hence,

f ≤ − log2(1− ω) + log2(1− ϕ) = log2

(

1− ϕ
1− ω

)

. (3.32)

Using this equation, after ϕ is selected, the appropriate ω, and hence η, which result in a desired

unfairness can be calculated. Furthermore, it is shown that the unfairness of the system is

controllable after the new constraint is added.

For the second unfairness measure define in (1.31) we have,

f̃ =
max {Ci}
min {Ci}

≤ − log2(1− ω)

− log2(1− ϕ)
. (3.33)

Note that both terms − log2(1 − ω) and − log2(1 − ϕ) are positive. Again, the new constraint

puts a limit on the ratio unfairness.

Equations (3.30) and (3.31) can be used to give approximations for f and f̃ as well. Here,

we use the notations f⋆ and f̃⋆ for the maximum expected subtractive and ratio unfairness

measures, respectively, given γ and η. By calculating these two values, maximum values for f

and f̃ can be guaranteed. Using (3.32) we have,

f⋆ = log2

(

1− ϕ
1− ω

)

= log2

(

2η

1 + γ

)

= η − log2(1 + γ) ≃ η − 1

ln 2
γ, (3.34)

Here, we have used the fact that if γ is very small then ln(1 + γ) ≃ γ. Equation (3.34) shows

that the maximum possible subtractive unfairness is a linear function of η and γ. Although, γ

has a negative contribution to f⋆ (with a coefficient of about 1.44), according to the fact that γ

is negligible, we know that η is the main factor which determines f⋆.

Using (3.33) we also have,

f̃⋆ =
log2(1− ω)

log2(1− ϕ)
=

η

log2(1 + γ)
≃ η

γ
ln 2. (3.35)
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The two equations (3.34) and (3.35) relate f⋆ and f̃⋆ to γ and η. However, the operation can

be performed in the other direction as well, namely, values of γ and η which yield desired values

of f⋆ and f̃⋆ can be calculated. Solving (3.34) and (3.35) for γ and η we have,

γ = 2
f⋆

f̃⋆
−1 − 1 ≃ f⋆

f̃⋆ − 1
ln 2, (3.36)

η =
f⋆f̃⋆

f̃⋆ − 1
. (3.37)

Note that f⋆ ≥ 0 and f̃⋆ ≥ 1, by definition.

As a numerical example, setting γ = −50dB and η = 0.3 we will have f⋆ = 0.30 and

f̃⋆ = 65.76. Compared to Table 5.1, in which f = 0.25 and f̃ = 6.02, we will infer that f⋆ is in

fact a good approximation. Also, while f̃⋆ is still a conservative value, the system is in fact more

fair than this approximation. Similarly, selecting f⋆ = 5 and f̃⋆ = 0.2 yields γ ≃ −30dB and

η = 0.25. The formulation can also be used for determining the value of η which gives f̃⋆ = 3

for γ = −50dB (the answer is η = 0.014 for which f⋆ = 0.0091).

3.2 New Enhanced Single Cell (N+SC)

The capacity shares of the mobile stations in a system constitute a set of non-negative numbers

with a total of one. Therefore, in a system which depends on all the mobile stations evenly we

will have,

C̃i =
1

M
. (3.38)

Here, C̃i is the capacity share and is defined (1.32). Looking from the point of view of the mobile

stations, this system is allocating identical capacities to all the mobile stations. However, this

ideal case may not be practically acceptable because the system tends to acquire more revenue

from giving service to those who are capable of receiving it, in our case those who are closer to
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the base station and have larger values of gi. On the other hand, very high values of C̃i denote

the extreme dependence of the system on one particular mobile station. In fact, losing such a

mobile station will results in a loss of revenue with the factor of 1− C̃i. Therefore, it is necessary

to be able to control the maximum range for the elements of ~̃C. Note that, even though in such

a system no minimum bound for the elements of ~̃C is devised, the maximum capacity share and

the minimum capacity bounds result in an implicit bound on the minimum capacity share of

the individual mobile stations.

This section is organized as follows. First, in Section 3.2.1, a new maximum capacity share

constraint is introduced and it is shown how it integrates into the NSC. Then, Section 3.2.2

analyzes the new bound and demonstrates how the dimension of the search space can be reduced.

The analysis then follows, in Section 3.2.3, where a theorem is proved which produces a finite

set which is guaranteed to contain the optimal solution. Then, an algorithm is proposed which

solves the NSC equipped with the new constraint, resulting in the problem which is called the

N+SC. Finally, Section 3.2.4 gives a maximum bound for the computational cost of the proposed

algorithm.

3.2.1 Maximum Capacity Share Bound

To make the maximum limit for the elements of ~̃C independent from the number of the mobile

stations, we compare C̃i with M−1 in a condition formulated as,

C̃i ≤
1

µ

1

M
, 0 ≤ µ ≤ 1. (3.39)

Working on (3.39) and applying (2.6) on (1.7) and (1.8) and using (3.39) and (2.13) we will

have,

Mµ log2

1 + T

1 + T − xi
≤ log2

(1 + T )M

M
∏

j=1

(1 + T − xj)
. (3.40)
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Following this analysis by writing the power share of the i–th mobile station as,

x̃i =
xi

I +
M
∑

j=1

xj

=
xi

1 + T
, (3.41)

Equation (3.40) changes into,

(1− x̃i)Mµ ≥
M
∏

j=1

(1− x̃j)→ 1−Mµx̃i + ∆1 ≥ 1−
M
∑

j=1

x̃j + ∆2. (3.42)

Here, both ∆1 and ∆2 are terms including the product of two or more of the elements of ~x,

where x̃i ∈ [ϕ, ω]. For typical values of γ = −30dB and η = 0.3 this interval becomes [0.03, 0.19].

Due to the fact that x̃i ≪ 1, it is possible to ignore terms including powers of two and more in

(3.42) and following some routine derivation write the approximate form,

xi ≤
1

Mµ
T. (3.43)

We will empirically show that this is a valid approximation.

In summary, the N+SC problem can be written as minimizing Φ(~x), given in (2.8), subject

to,







































































0 ≤ pi ≤ pmax,∀i,

γ ≤ pigi

I +
M
∑

j=1,j 6=i

pjgj

≤ 2η − 1,∀i,

M
∑

i=1

pigi ≤ Pmax,

pigj ≤
1

Mµ

M
∑

j=1

pjgj .

(3.44)
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3.2.2 Limiting the Search Space

Combining all the constraints for xi we have,

ϕ(1 + T ) ≤ xi ≤ min

{

li, ω(1 + T ),
1

Mµ
T

}

,∀i. (3.45)

Hence, according to the descending pattern of ~g, and hence that of ~l, the search space has a

pyramid structure, and therefore the optimal solution to the N+SC can be written as,

~x = (ω(1 + T ), · · · , ω(1 + T ), lj+1, · · · , lk−1, xk, ϕ(1 + T ), · · · , ϕ(1 + T )) , (3.46)

if,

1

Mµ
T ≥ ω(1 + T ), (3.47)

~x =

(

1

Mµ
T, · · · , 1

Mµ
T, lj+1, · · · , lk−1, xk, ϕ(1 + T ), · · · , ϕ(1 + T )

)

, (3.48)

if,

1

Mµ
T < ω(1 + T ). (3.49)

Here, the appropriate values of j, k, and xk have to be found in order to make ~x conform to

all the constraints. The rest of this section discusses the conditions that make ~x an acceptable

solution to the N+SC. Here, we first find a subset of the search space in which all the constraints

are satisfied. Then, in the next section, the value of xk is analyzed and a theorem is proved.

Working on (3.46) and (3.48) we have,

1 + T =
1

ψ
(xk + L+ 1). (3.50)

52



Chapter 3. Extensions to Single–Cell 3.2. New Enhanced Single Cell (N+SC)

Here,

L =
k−1
∑

i=j+1

li, (3.51)

ψ = 1− [jω + (M − k)ϕ] , (3.52)

Similarly, working on 1
Mµ

T ≥ ω(1 + T ) leads to,

T ≥ ωMµ

1− ωMµ
, (3.53)

which also needs ωMµ < 1. Substituting (3.50) into (3.53) we have,

xk ≥ ψ
1

1− ωMµ
− (L+ 1). (3.54)

As (3.46) is identical to the pattern of the solution to the NSC we conclude that one solution

to the N+SC is the solution which comes from the NSC given that (3.54) is also added to the

set of conditions. We will call this algorithm as the NSC+c.

Note that if Mµ ≤ 1 then (3.43) becomes trivial. In this situation the N+SC reduces to an

ordinary NSC.

Now, we consider (3.48). We have,

1 + T =
1

ψ
(xk + L+ α). (3.55)

Here, L is identical to what is defined in (3.51) and,

α = 1− j

Mµ
, (3.56)

ψ = 1−
[

j

Mµ
+ (M − k)ϕ

]

. (3.57)
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Note that although using the same symbol, ψ has two different definitions in (3.52) and (3.57).

We use the same symbol for two different identities because they are used in separate algorithms.

Now, working on 1
Mµ

T < ω(1 + T ) gives either ωMµ > 1 or,

T ≤ ωMµ

1− ωMµ
→ xk ≤ ψ

1

1− ωMµ
− (L+ α). (3.58)

Note that (3.54) and (3.58) are the two sides of the same inequality in two different setups and

hence lead to two different conditions.

Routine derivation shows that to make (3.48) comply with all the constraints we should have,

xk ≥ max











(ψ (Mµlj+1 + 1)− (L+ α)) (1− [k ≤ j + 1])

ϕ

ψ − ϕ(L+ α)











, (3.59)

xk ≤ min























































ψmin



























Xmax + 1

Mµlj + 1

1− [j = 0]
1

ϕ
lM



























− (L+ α)

L+ α− ψ
Mµψ − 1

1

1− [Mµψ < 1]

lk























































. (3.60)

We call the algorithm which finds the optimum solution given these constraints the N′SC. Note

that this is not an independent algorithm and will be used inside another algorithm. When

(3.58) is added to the search space for the N′SC, we call the new algorithm as the N′SC+c.

What was performed so far aimed at finding the search space in which all the constraints

are satisfied. The next step in this analysis is to spot the optimal solution in the search space.

Working on the N+SC, we know that if Mµ ≤ 1 is satisfied then the solution can be sought for

using the NSC algorithm, because the new maximum capacity share constraint becomes trivial.

Furthermore, we know that when ωMµ < 1 the solution is the one given by either the NSC

equipped with the extra inequality (3.54) or by the N′SC equipped with (3.58). On the other
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1. If Mµ < 1 then solve the NSC.

2. Else, if ωMµ < 1 Then

(a) Solve the NSC+c.

(b) Solve the N′SC+c.

3. Else, solve the N′SC.

4. Find the best outcome.

Figure 3.3: Details of the algorithm N+SC.

hand, if ωMµ ≥ 1, the solution comes from the N′SC (see the comments before (3.58)). The

pseudo–code of this algorithm is shown in Figure 3.3. Note that each algorithm, namely the

NSC or the N′SC, have their own search space and also their own structure of the vector ~x, as

shown in (3.46) and (3.48).

3.2.3 Spotting the Solution

In Section 3.2.2 the search space was limited by a set of inequalities to satisfy all the constraints.

Therefore, it was proven than the optimal solution is one of the points of the given search space,

which still is infinite. However, in the case of the NSC it was proved that xk should accept one

of the boundary values, leading to a finite set of possible solutions from which the optimal one

is selected. The basis of that argument is a theorem proved in Section 2.5. In this section we

will prove a theorem more general than the one proved previously. the new theorem will prove

that for the case of the N′SC too the value of xk must be equal to one of the boundaries.

Looking at Figure 3.3 we are concerned with solving the NSC or the N′SC either solely by

themselves or when an extra inequality for xk is included in the problem as well. The theorem

proved in Section 2.5 shows that for the NSC structure of ~x, which is given in (3.46), having

l ≤ xk ≤ L, which complies with all the constraints, the optimal solution is produced by either

xk = l or xk = L. Hence, we should produce ~x for both of these choices and then find the value

of the function at that point. Iterating this check for all the possible values of j and k we will

have a list of possible solutions, one of which is the optimal one. Here, we will prove that with
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the structure of ~x which is given in (3.48) the same condition applies. So, again, we should only

check a finite number of possibilities and then find the optimal solution among them. In the

following parts of this section we will prove a theorem which allows us to do so.

Using the structure of ~x for the N′SC given in (3.46) and (3.48), we have,

Φ(~x) =
(1− ϕ)M−k

(1 + T )k

(

1 + T − 1

Mµ
T

)j k−1
∏

i=j+1

(1 + T − li) (1 + T − xk) . (3.61)

Defining,

β = L+ α, (3.62)

βi =



























L+ α+
ψ

Mµ− 1
i = 1, · · · , j

L+ α− ψli i = j + 1, · · · , k − 1

L+ α

1− ψ i = k

, (3.63)

we can write,

Φ(~x) = Cf(xk), (3.64)

where,

f(x) =

k
∏

i=1

(x+ βi)

(x+ β)k
. (3.65)

Here, C is a positive constant. Using (3.63) and (3.62) we can show that all the elements of ~β

and also β are positive.

Assume that we have shown that f ′(x) cannot become zero twice. Also, note that the smallest

of all the elements of ~β and β is βj+1. Hence, the largest zero of f(x), after which it neither

gets zero nor goes to infinity, is −βj+1. Knowing that limx→∞ f(x) = 1, we infer that f ′(−βj+1)
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should be positive. Because, otherwise, for a positive ε the value of f(−βj+1 + ε) becomes

negative. Then the continuous function f has different signs in the interval [−βj+1 + ε,∞] and

hence there should be at least one x in this interval for which f(x) gets zero, something we

know is impossible. Knowing f ′(−βj+1) is positive, for f(x) to have a local minimum inside

[−βj+1,∞] we should have a point c in this interval in which f ′(c) = 0 and f ′(c−) < 0. Now, the

continuous function f ′(x) accepts two different signs in the two margins of [−βj+1, c] and hence

should have a zero in between. Having proved that f ′(x) cannot have two zeros in [−βj+1,∞]

we know that this is impossible. Hence, we know that in any interval [l, L] on the positive side,

the minimum value of f(x) happens in a boundary, and not a point inside the interval. Now,

we prove that f ′(x) cannot become zero twice in the interval [0,∞].

We assume that there are at least two distinct solutions for f ′(x) = 0. Therefore,

f ′(x) = f(x)

(

k
∑

i=1

1

x+ βi
− k

x+ β

)

= 0→
k
∑

i=1

1

x+ βi
=

k

x+ β
. (3.66)

Minor algebraic manipulations give,

x+ β =

(

1

k

k
∑

i=1
x+ βi

)−1

. (3.67)

We know that if for continuous functions f(x) and g(x) there are two distinct solutions to

f(x) = g(x) for x ∈ [a, b] then there is a solution for f ′(x) = g′(x) in the same interval. Hence,

having two solutions to (3.67), there should be a solution for,

1

k

k
∑

i=1

1

x+ βi
=

(

1

k

k
∑

i=1

1

(x+ βi)
2

)

1

2

. (3.68)

Here, we use the general mean theorem stated as follows. Assume that the positive values of

x1, · · · , xn are given and define ~x = (x1, · · ·xn). Now defining,

M r(~x) =

(

1

n

n
∑

i=1

xri

) 1

r

, (3.69)
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the general mean theorem states that for r < s we have M r(~x) ≤M s(~x). The equality happens

when all the elements of ~x are all identical. Hence, (3.68) may only happen if x + βi = x + βj

for all values of i and j. This needs all the elements of ~β to be identical, contradicting their

definition given in (3.63). Hence, we have proved that the solution to the N′SC happens in one

of the bounds given in (3.59) and (3.60) and nowhere in between. Note that this is a property

of the structure of ~x and not any particular bounds. Hence, including other bounds for xk does

not contradict these results, as long as the interval remains on the positive side. Therefore, the

same theorem applies to the NSC+c and to the N′SC+c, as well.

In order to execute the code given in Figure 3.3 one should only find the respective boundaries

for xk, construct the vector ~x and then find the value of the aggregate capacities. Then, a

comparison over all the possibilities gives the optimal solution. The essence of this algorithm is

identical to the one given for the CSC (see Section 2.6) and the NCS (see Section 3.1.3) while

the structure of ~x and also the boundaries are vastly different in each of these algorithms.

3.2.4 Computational Cost

Using Figure 3.3 we know that,

τN+SC = 1 + max























τNSC

1 + max











τNSC + τN ′SC + 2M2 − 2M + 2

τN ′SC

































. (3.70)

Here, τP is the computational cost of the algorithm P (in flops) for solving a problem including

M mobile stations. Hence, at the worst case,

τN+SC =
32

3
M3 +

128

3
M2 − 52M + 20, (3.71)

which is almost twice as much as the computational cost of the NSC (see Section 3.1.4). Still,

the computational cost of the new algorithm is of order O(M3).

58



Chapter 3. Extensions to Single–Cell 3.3. Application of the Approximations

3.3 Application of the Approximations

In this section, we use approximations in order to reduce the computational cost of finding the

aggregate capacity for a given xk. Also, new shorter proofs for the established theorems are

given.

This section is organized as follows. First, in Section 3.3.1, the algorithms proposed in

Chapter 2 and Sections 3.1 and 3.2 are looked at through a unifying approach, yielding the

concept of a “typical algorithm”. Then, giving an approximation for the aggregate capacity in

Section 3.3.2 and using a theorem proved in Section 3.3.3 the basis for the new analysis is stated.

These results are used in Section 3.3.4 to propose substitute approximate algorithms.

3.3.1 Typical Algorithm

The three algorithms of the CSC, the NSC, the N+SC, and also the internal algorithm the N′SC,

have a similar structure. In fact, the analysis always shows that there is a value of k, or a pair

of j and k, for which the vector ~x is linearly calculated based on xk. Then, the problem is to

find the best k, or k and j, and then spot the best xk. For each problem it has independently

been proved that having fixed k, and also j if applicable, xk should accept either the smallest

or the largest value allowed by the boundaries. This way, in each algorithm the two functions θ

and Θ which depend on k, and j if applicable, and the system parameters are derived. Then,

the question is to iterate over all values of k, and j if applicable, and to set xk = θ and xk = Θ

and gather all possible results. Then, the best solution is selected.

3.3.2 Approximations

Except for the CSC, γi is always a member of [γ, 2η − 1] and therefore, using nominal values of

γ = −30dB and η = 0.3, approximating ln(1 + γi) with γi carries less than 10% error. Hence,

we write,

Ci ≃
1

ln 2
γi =

1

ln 2

xi
1 + T − xi

=
1

ln 2

xi
1 + T

1− xi
1 + T

. (3.72)
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We know that xi

1+T belongs to [ϕ, ω]. For the mentioned values of γ and η we have ϕ = 0.03 and

ω = 0.19. Hence, we approximate Ci as,

Ci ≃
1

ln 2

xi
1 + T

(

1 +
xi

1 + T

)

. (3.73)

A closer look into (3.72) and (3.73) reveals that here we are using the approximation,

log2

(

1 +
x

1− x

)

≃ 1

ln 2
x (1 + x) , (3.74)

for x = xi

1+T . We know that for the cases of the NSC and the N+SC x belongs to [ϕ, ω]. Cal-

culating the right and the left sides of (3.74) for different values of x and drawing them on

the same axes, as shown in Figure 3.4–(a), we investigate the properness of this approxima-

tion. Figure 3.4–(b) shows that for the cases of the NSC and the N+SC, the shaded area, the

approximation results in less than 8% error. Also, for these two problems the exact value is

always less than the approximated one. However, for highly impartial CSC solutions, for which

x may go over 0.7, the approximation may fall below the exact value. Note that, generally, the

approximation generates less than 10% error, independent of the algorithm. This approach is

partially based on the analysis given in [120].

Using (3.73) we have,

C ≃ 1

ln 2















T

T + 1
+

M
∑

i=1

x2
i

(1 + T )2















=
1

ln 2















1 +

M
∑

i=1

x2
i

(1 + T )2
− 1

1 + T















. (3.75)

Equation (3.75) shows that for fixed T the maximum value of C(~x) happens when
∑M

i=1 x
2
i is

maximum. Assuming that all the elements of ~x are fixed except for xj and xk, while we should

have,

xj + xk = T −
M
∑

i=1,i6=j,i6=k

x2
i = S, (3.76)
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Figure 3.4: Investigation of the properness of (3.74). (a) The two sides of (3.74). (b) The relative error
induced by using the approximation given in (3.74). The shaded area shows the working
interval for the cases of the NSC and the N+SC.

the problem reduces to looking for the maximum value of x2
j + x2

k. Now, according to,

2(x2
j + x2

k) = (xj + xk)
2 + (xj − xk)2, (3.77)

the maximum happens when xj and xk are at the most possible absolute distance. This is

another proof for the theorem proved in Section 2.5.

Note that the approximation given in (3.75) is also helpful in fast calculation of the value

of C for a given ~x. As described in Section 3.3.1, the typical algorithm includes finding bounds

for the xk, for different values of k, and j if applicable, and then finding the aggregate capacity

at the bounds. Using the approximation given here this process can be accelerated. Note that

using this method, the calculation of the boundaries is still being carried out precisely according

to the exact formulation. Therefore, if the approximate algorithm does not fail in finding the

best k, and j if applicable, the values of p1, · · · , pM will be exactly accurate. The actual worry

here is that the approximation may deviate the algorithm from finding the best k, or j, and

hence give a wrong result. Here, we assume that the approximation does not change two values

of C for two different vectors ~p in a way that the better situation becomes worse. Assuming

this, after ~p is determined ~C is calculated again in order to yield the exact result. Through
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experimental analysis we will empirically show that the approximate algorithm does give the

exact solution, with a negligible probability of erratic behavior. After producing the correct ~p,

and the approximate value of C, we will recalculate C using the precise formulation. This will

result in finding the precise value of C.

3.3.3 Theorem

Assume that values of a, b and c are given and that the function f(x) is defined as,

f(x) =
x2 + ax+ b

(x+ c)2
, x ∈ R+ ∪ {0}. (3.78)

Also, assume that we know that c is positive. In fact, this function has one singularity on

x = −c, which is on the negative side. Also, we know that limx→∞ f(x) = 1 and,

f ′(x) =
(2c− a)x+ (ac− 2b)

(x+ c)3
. (3.79)

Hence, for x > −c the value of f ′(x) gets zero at most once. Although, we do not yet know the

sign of limx→−c f(x), it is identical to the sign of c2− ac+ b. Assume that this value is positive,

meaning limx→−c f(x) = +∞. We claim that for any interval on the positive side, say [θ,Θ],

the maximum value of f(x) in [θ,Θ] is either f(θ) or f(Θ).

We will show that given the specified conditions, f(x) has one of the typical shapes depicted

in Figure 3.5. Note that for x ∈ [0,∞] both f(x) and f ′(x) are continuous. Furthermore,

the fact that limx→−c f(x) = +∞ implies that limx→−c f
′(x) = −∞. Also, we know that,

limx→∞ f ′(x) = 0. Hence, for positive values of x, the value of f(x) is negative, converging to

zero at +∞. We know that this function can at most get zero once during this process. Hence,

there are two possibilities. First, f ′(x) is always negative, except for at infinity in which it

becomes zero (the dashed line in Figure 3.5). Second, it is negative then gets zero and positive

and then it returns to zero (the solid line in Figure 3.5). For any f(x) which has either of the

shapes shown in Figure 3.5 we observe that for any interval on the positive side the maximum
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Figure 3.5: Possible shapes of the function f(x) defined in (3.78) in the circumstances discussed in
Section 3.3.3.

happens at the boundary. We will show how this theorem substitutes the more complex theorems

proved in Sections 2.5, 3.1.2 and 3.2.3.

3.3.4 Approximate Algorithms

In this section the ideas introduced so far are used to propose the three alternative algorithms

of the CSCa, the NSCa, and the N+SCa. Here, we also show how the approximate calculation

of C is incorporated into the proposed algorithms. In fact, for the algorithm XSC, which is one

of the algorithms the CSC, the NSC, the N′SC, and the N+SC, we replace the exact calculation

of C with the approximate one in order to produce the algorithm XSCa.

In each case, the exact formulations and the benefits of the proposed method in terms of

computational cost will be presented. Also, we give new proofs for theorems for which more

complicated proofs were given in the previous parts of this thesis. We show that the application

of the approximations results in new shorter proofs for the equivalents of the theorems in the new

framework. We again emphasize that after the approximate value of C is found, we calculate

the exact C using a single run of the formulation which gives the precise C in terms of ~p. In

the experimental results we will use the terms E, A, and E+A for the exact results, the crude

results of the approximate algorithm and the recalculated results, respectively.

The CSCa

According to the formulation for the solution to the CSC, given in Chapter 2, we have,

~x = (l1, · · · , lk−1, xk, ϕ(1 + T ), · · · , ϕ(1 + T )) . (3.80)
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Hence,

C(~x) ≃ 1

ln 2

(

L+ x2
k + (M − k)ϕ2(1 + T )2 − (1 + T )

(1 + T )2
+ 1

)

. (3.81)

Here,

L =
k−1
∑

i=1

l2i . (3.82)

Now, using,

T = ψ−1(xk + l + 1), (3.83)

where,

l =

k−1
∑

i=1

li, (3.84)

ψ = 1− (M − k)ϕ, (3.85)

we have,

C(~x) ≃ 1

ln 2

(

ψ2
x2
k − 1

ψ
xk + L− 1

ψ
(l + 1)

(xk + l + 1)2
+ 1 + (M − k)ϕ2

)

. (3.86)

Hence, the problem translates into finding the maximum of (3.78) where,

a = −ψ−1, b = L− ψ−1(l + 1), c = l + 1. (3.87)

The search is performed in the interval given by (2.36) and (2.37).

Note that, we have,

c2 − ac+ b = l2 + 2l + 1 + L > 0. (3.88)
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Hence, using the theorem proved in Section 3.3.3, xk must accept one of the boundary values.

We compare this short proof with the one given in Section 2.5.

Equation (3.86) is also important because it can be used in order to reduce the computational

complexity of the solver. We compare this new algorithm to the previously proposed one which

has to produce ~C for every instance of k.

Analysis shows that the computational cost of the CSCa equals 36M + 6 flops, compared

to the 8M2 + 20M + 10–flops cost of the CSC (refer to Section 2.7). Hence, a decrease in

computational cost with ratio of 1
5M is observed. In fact, the computational cost drops from

O(M2) to O(M).

NSCa

Analysis of the NSC in Section 3.1 showed that,

~x =
(

ω(1 + T ), · · · , ω(1 + T ), lj+1, · · · , lk−1.xk, ϕ(1 + T ), · · · , ϕ(1 + T )
)

. (3.89)

Hence,

C(~x) ≃ 1

ln 2

(

jω2(1 + T )2 + L+ x2
k + (M − k)ϕ2(1 + T )2 − (1 + T )

(1 + T )2
+ 1

)

, (3.90)

which changes into,

C(~x) ≃ 1

ln 2

(

ψ2
x2
k − 1

ψ
xk + L− 1

ψ
(l + 1)

(xk + l + 1)2
+ 1 + (M − k)ϕ2 + jω2

)

. (3.91)

Here, we have defined,

L =
k−1
∑

i=j+1

l2i , (3.92)

l =
k−1
∑

i=j+1

li. (3.93)
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Also, we have,

T = ψ−1(xk + l + 1), (3.94)

where,

ψ = 1− (jω + (M − k)ϕ). (3.95)

Now, (3.91) decreases to a function of the type discussed in Section 3.3.3 with,

a = −ψ−1, b = L− ψ−1(l + 1), c = l + 1. (3.96)

Again, c2 − ac + b is positive. Hence, xk should accept one of the bounds given in (3.13) and

(3.14).

Using the approximate closed form for C(~x) given in (3.91) the computational cost of the

NSCa reduces to 23M2 − 21M + 14 flops compared to the 16
3 M

3 + 55
3 M

2 − 23M + 6–flop cost

of the NSC (see Section 3.1.4). This makes the new algorithm about 1
4M times faster than the

previous one and yields a computational cost of order of O(M2).

N+SCa

To analyze the N+SCa we first have to analyze the N′SCa, for which we have (refer to Sec-

tion 3.2.2),

~x =

(

1

Mµ
T, · · · , 1

Mµ
T, lj+1, · · · , lk−1, xk, ϕ(1 + T ), · · · , ϕ(1 + T )

)

, (3.97)

which gives (L and l are defined in Section 3.2),

C(~x) ≃ 1

ln 2

(

j
M2µ2T

2 + L+ x2
k + (M − k)ϕ2(1 + T )2 − (1 + T )

(1 + T )2
+ 1

)

. (3.98)
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Here,

1 + T = ψ−1(xk + l + α), (3.99)

α = 1− j(Mµ)−1, (3.100)

ψ = 1− (j(Mµ)−1 + (M − k)ϕ). (3.101)

Working on (3.98) we have,

C(~x) ≃ 1

ln 2

(

ψ2
x2
k − 1

ψ

(

2j
M2µ2 + 1

)

xk + L+ j
M2µ2 − 1

ψ

(

2j
M2µ2 + 1

)

(l + α)

(xk + l + α)2
(3.102)

+1 + (M − k)ϕ2 +
j

M2µ2

)

,

which is of the general form discussed in Section 3.3.3 if we substitute,

a = −ψ−1(2jM−2µ−2 + 1), c = l + α, (3.103)

b = L+ jM−2µ−2 − ψ−1(2jM−2µ−2 + 1)(l + α), (3.104)

Here, we have,

c2 − ac+ b = (l + α)2 + L+ jM−2µ−2 > 0. (3.105)

Hence, the solution should be one of the boundary values given in Section 3.2.2. Using (3.103) the

computational cost of the N′SCa reduces from 16
3 M

3+ 67
3 M

2−27M+16 flops to 26M2−23M+15

flops, a decrease by 1
5M .

Using these results and also the ones presented in Section 3.2 the computational cost of the
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N+SCa becomes τN+SCa = 51M2−46M+33 flops, compared to the last cost of 32
3 M

3+ 128
3 M2−

52M + 20 flops for the N+SC. Again, the computational cost is reduced by 1
5M .

3.4 Utility Functions

As shown in Figure 3.1, the problems analyzed in Chapter 2 and Sections 3.1 and 3.2 use

different sets of constraints, and thus reach different design goals. However, they all assume

that the “benefit” of serving a mobile station at a certain capacity depends linearly on that

capacity. In other words, looking at (1.8), the objective function, C (~p), uses the utility function

f(x) ≡ x, whilst, in real applications, being able to work with other utility functions gives

the designer a significant degree of flexibility. In particular, according to the fact that all the

algorithms discussed in the above tend to produce solutions in which all the elements of ~p are

at the margins, we may be able to produce more fair solutions using concave utility functions.

Here, we define a more general definition of the aggregate “satisfaction” as,

Ĉ (~p) =
M
∑

i=1

f (Ci) , (3.106)

where, f : R
+∪{0} → R

+∪{0} is a doubly differentiable increasing function. Note that, Ĉ shows

the aggregate satisfaction in the system, as opposed to C which shows the aggregate capacity.

However, to comply with the history of the problem and also for consistency we address Ĉ as

the aggregate “capacity”.

In this section, we first show that the algorithms the CSC, the NSC, and the N+SC all remain

functional if f is a convex function, while minor changes in the implementation is necessary. We

emphasize that this proof only has theoretical importance. Because, given the behavior of the

problem when the identity utility function is employed, there is no reason for using convex utility

functions.

In the next step, we work on concave utility functions, and we show that given that a few

conditions are met, the problem will be solved using a method proposed in this section. While
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the proposed method could be further developed for the case of the N+SC, we work on the NSC,

because of mathematical convenience. To address problems produced by using (3.106), we use

the superscripts f− and f+ for the cases of concave and convex utility functions, respectively.

For example, the NSC problem equipped with a concave utility function, given that a few other

conditions are met, will be called the NSCf−. Furthermore, as we focus on the utility functions

defined as f(x) ≡ xα, we will also address the problems such as the NSCα.

3.4.1 Convex Utility Functions

Assume that the convex utility function f(x) is given. We also assume that for x ≥ 0, both

f ′(x) and f ′′(x) are positive. Using (3.106) we have,

Ĉ (~x) =
M
∑

i=1

f (log2 (1 + γi)) =
M
∑

i=1

f

(

− log2

(

1 + T − xi
1 + T

))

. (3.107)

Defining

g(x) = f (− log2 (x)) , (3.108)

we have,

Ĉ (~x) =
M
∑

i=1

g

(

1 + T − xi
1 + T

)

. (3.109)

Note that g : (0, 1)→ R
+ ∪ {0}.

Lemma I: The function g is strictly convex (g′′(x) > 0). Accordingly, g′ is an increasing

function, and thus it is one-to-one.

Proof : Analyzing g(x), we have,

g′′(x) =
1

ln(2)
x−2f ′ (− log2(x)) +

1

(ln(2))2
x−2f ′′ (− log2(x)) > 0. (3.110)

�
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Theorem I: In the solution to the NSCf+, no extension is possible (refer to Section 2.3 for

the definitions of extension and extending pairs).

Proof : Assume that ~x is the maximizer of Ĉ. Also assume that an extension engaging the

two indexes i and j and the value of δ, resulting in a potential solution ~x⋆, is possible. Note

that there is a value of T for which ~x and ~x⋆ both lie on the same hyperplane defined as (2.13).

Thus, writing Ĉ (~x) as,

Ĉ (~x) = Ĉ◦ (~x) + g

(

1 + T − xi
1 + T

)

+ g

(

1 + T − xj
1 + T

)

, (3.111)

where,

Ĉ◦ (~x) =
M
∑

ℓ=1,ℓ6=i,j

g

(

1 + T − xℓ
1 + T

)

, (3.112)

we have Ĉ◦ (~x) = Ĉ◦ (~x⋆). Thus, it is necessary to have,

g

(

1 + T − xi
1 + T

)

+ g

(

1 + T − xj
1 + T

)

≥ g
(

1 + T − x⋆i
1 + T

)

+ g

(

1 + T − x⋆j
1 + T

)

. (3.113)

Note that there is a value of t ≥ 0 for which,

xi + xj = x⋆i + x⋆j = t. (3.114)

Defining,

∆ (xi, xj) = g

(

1 + T − xi
1 + T

)

+ g

(

1 + T − xj
1 + T

)

, (3.115)

and using (3.114), where,

∂∆

∂xj
= − 1

T + 1
g′
(

T + 1− xj
T + 1

)

+
1

T + 1
g′
(

T + 1− t+ xj
T + 1

)

, (3.116)
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0 t/2 t

min

max

x
j

∆(
x j,t−

x j)

Figure 3.6: Typical structure of ∆(xj , t− xj).

which is an increasing function in terms of xj . Thus, remembering that,

∆ (xi, xj) = ∆ (xj , xi) , (3.117)

it can be shown that the curve ∆(xj , t − xj) has the structure shown in Figure 3.6. Thus, for

xj ≤ t
2 (xj ≥ t

2), as xj tends to the left (the right), ∆(xj , t−xj) increases. Hence it is impossible

for (3.113) to happen �

Having proved Theorem I, which is the general case of the similar theorem given in Sec-

tion 2.3, the three resulting lemmas stated in Section 2.3 are valid in the NSC. Here, the lemmas

are briefly reviewed. For any i, making xj for j 6= i fixed, xi can accept values in an interval,

which we call [bi, Bi]. In this definition, xi is called to be at the beginning, at the middle, or at

the end, if xi = bi, bi < xi < Bi, or xi = Bi, respectively. Using these definitions, the following

lemmas are valid.

Lemma II In the solution to the NSCf+ there is at most one xi at the middle.

Lemma III In the solution to the NSCf+, if there is one xi at the middle, every xj for j > i

will be at the beginning.

Lemma IV In the solution to the NSCf+, if xk is at the middle and for a value of m,

satisfying m < k, xm is at the beginning, then for m < i < k, xi cannot be at the end. Using

Lemma III this implies that xi must always be at the beginning.
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Using these lemmas, a theorem similar to Theorem VI in Section 2.3 is concluded.

Theorem II: If there is any solution to the NSCf+, then it has the structure shown below,

~x = (ω(1 + T ), · · · , ω(1 + T ), lj+1, · · · , lk−1, xk, ϕ(1 + T ), · · · , ϕ(1 + T )) . (3.118)

Proof : Referring to Lemmas II, III, and IV, this is the only possible case �

Thus, rather than searching for the optimal solution to the NSCf+ in [0, pmax]
M , the problem

reduces to finding the proper j, k, and xk. This yields a reduction of the dimension of the search

space from M to 3. We will prove that in fact the search space can be further reduced to an

order of M2 individual points, for which we present closed forms. Here, first necessary and

sufficient boundaries for xk are given.

Theorem III: In the optimal solution to the NSCf+ we have,

T =
1

ψ
(xk + L+ 1)− 1, (3.119)

where,

L =

k−1
∑

i=j+1

li, (3.120)

ψ = 1− [jω + (M − k)ϕ] . (3.121)

Furthermore, we must have ψ > ϕ and,

xk ≤ maxjk = min











































lk
ω

ψ − ω (L+ 1)
1

1− [ψ < ω]

ψmin











1

ω
lj

1

1− [j = 0]
1

ϕ
lM , Xmax + 1











− (L+ 1)











































, (3.122)
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xk ≥ minjk = max















(

ψ

ω
lj+1 − (L+ 1)

)

(1− [k ≤ j + 1])

ϕ

ψ − ϕ(L+ 1)















. (3.123)

Proof : Refer to the proof given in Section 2.4 �

Now, the question is to find the best xk, given k and j are known. This is carried out through

Theorem IV.

Theorem IV: In the optimal solution to the NSCf+, xk must accept one of the marginal

values given in (3.122) and (3.123).

Proof : Assume that the values of j and k are given, for which maxjk and minjk, given

in (3.122) and (3.123), satisfy maxjk ≥ minjk ≥ 0. Now, the question is which value of

xk ∈ [minij ,maxjk] maximizes,

Ĉ (xk) =
M
∑

i=1

g

(

1 + T − xi
1 + T

)

, (3.124)

where the relationship between the elements of ~x and xk is given in (3.118). Routine substitution

shows that,

Ĉ (xk) = jg (1− ω) +
k−1
∑

i=j+1

g

(

1 + T − li
1 + T

)

+ g

(

1 + T − xk
1 + T

)

(3.125)

+(M − k)g(1− ϕ).

Thus, the problem reduces to maximizing,

Ĉ◦ (xk) =
k−1
∑

i=j+1

g

(

1 + T − li
1 + T

)

+ g

(

1 + T − xk
1 + T

)

. (3.126)

Using Theorems II and III, (3.126) is rewritten as,

Ĉ◦ (xk) =

n−1
∑

i=1

g

(

xk + βi
xk + β

)

+ g

(

(1− ψ)
xk + βn
xk + β

)

, (3.127)
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where,

n = k − j, β = L+ 1, (3.128)

βi =











L+ 1− ψli+j 1 ≤ i ≤ n− 1

L+ 1

1− ψ i = n
. (3.129)

Note that β1 < β2 < · · · < βn−1 < β < βn.

We prove that there is at most one plausible solution to,

∂Ĉ◦

∂xk
= 0. (3.130)

Assuming otherwise, derivation shows that,

∂Ĉ◦

∂xk
=

1

(xk + β)2

[

n−1
∑

i=1

(β − βi) g′
(

xk + βi
xk + β

)

− (1− ψ) (βn − β) (3.131)

g′
(

(1− ψ)
xk + βn
xk + β

)

]

.

Thus, assuming that there are two plausible solutions for (3.130), there must be at least two

zero–crossings for,

C̃(xk) =
n−1
∑

i=1

(β − βi) g′
(

xk + βi
xk + β

)

− (1− ψ) (βn − β) g′
(

(1− ψ)
xk + βn
xk + β

)

. (3.132)

Hence, there must be at least one plausible solution to,

∂C̃

∂xk
= 0. (3.133)

Routine calculations show that,

∂C̃

∂xk
=

n−1
∑

i=1

(β − βi)2 g′′
(

xk + βi
xk + β

)

+ (1− ψ)2 (βn − β)2 g′′
(

(1− ψ)
xk + βn
xk + β

)

> 0. (3.134)
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Thus, there is no plausible solution to (3.133) and hence there is at most only one plausible

solution to (3.130).

It is convenient to prove that,

lim
xk→−β+

1

Ĉ◦ (xk) = +∞, (3.135)

lim
xk→−β+

1

C◦′ (xk) = −∞, (3.136)

lim
xk→∞

Ĉ◦ (xk) = (n− 1) lim
ε→1−

g (ε) + g (1− ψ) > 0. (3.137)

Also, we know that for xk > −β1, Ĉ
◦ (xk) is always finite. Routine derivation shows that for

xk ≫ βn,

∂Ĉ◦

∂xk

∣

∣

∣

∣

∣

xk

≃ f ′(0)

(xk + β)2 ln(2)
Γ, (3.138)

where,

Γ =

[

n−1
∑

i=1

βi − (n− 1)β + (βn − β) ν

]

, (3.139)

ν =
f ′ (− log2 (1− ψ))

f ′ (0)
> 1. (3.140)

Substituting (3.128) and (3.129) in (3.139) yields,

Γ = [(ν − 1 + ψ)L+ ν]
ψ

1− ψ > 0. (3.141)
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0
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lim

x
k

C
o (x

k)

−β
1

Figure 3.7: Typical structure of Ĉ◦ (xk).

Thus, according to (3.138),

lim
xk→∞

Ĉ◦ (xk) = 0+. (3.142)

Using (3.135), (3.136), (3.137), and (3.142), it could be shown that Ĉ◦ (xk) has the structure

shown in Figure 3.7. Note that, although, in Figure 3.7 the minimizer of Ĉ◦ (xk) is shown to be

negative, in fact, in some cases it is positive. Nevertheless, in any interval on the positive side,

the maximum of Ĉ◦ (xk) happens on one of the boundaries �

According to Theorem IV, in order to find the optimal solution to the NSCf+ it suffices to

examine all values of j and k and to find maxjk and minjk, as given in (3.122) and (3.123).

Then, the value of Ĉ (~x) for the two alternatives of xk = maxjk and xk = minjk should be

independently calculated. From this list of solutions, which contains less than 2M2 potential

points, finding the largest aggregate capacity retrieves the optimal solution. This algorithm is

called the NSCf+ and is carried in detail in Figure 3.8.

Comparing the NSCf+ with the NSC reveals that the potential solutions of these two prob-

lems are identical. Therefore, the essential difference between the two algorithms is the objective

function which is calculated for each candidate point.

Analysis shows that the computational cost of NSCf+ equals τNSCf+ =
16+3τf

3 M3 flops.

Here, τf is the cost of calculating f(x) for one x. In the case of a power law (f(x) = xα, α > 1)
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1. Compute Xmax using (2.11) and ~l using (2.9).

2. Compute ϕ and ω using (2.5) and (3.6).

3. Report ‘‘Error’’ if ω < ϕ.

4. For all j from 0 to M and for all k from j + 1 to M, do the

followings,

(a) Compute ψ using (3.121).

(b) If not ψ > ϕ then ignore this pair of j and k.

(c) Compute L using (3.120).

(d) Compute maxjk and minjk using (3.122) and (3.123),

respectively.

(e) If not maxjk ≥ minjk ≥ 0 then ignore this pair of j and k.

(f) Do the followings for the two values of xk = minjk and

xk = maxjk, independently. Store both Ĉ(~x) and ~x for each

trial.

• Compute T using (3.119).

• Produce ~x using (3.118).

• Compute Ĉ(~x) using (3.106).

5. Find the largest value of Ĉ produced at the above and retrieve

the corresponding ~x.

6. Compute ~p, using (2.6), and return them as well as Ĉ.

Figure 3.8: Details of the algorithm NSCf+.

the computational cost will equal τNSCf+ = 6.3M3.

We emphasize that while the potential solutions to the NSC and the NSCf+ are the same,

there is no claim that the final solutions to these two problems will also be the same. However,

the author has no counterexample which would lead to different outcomes by the two algorithms.

3.4.2 Concave Utility Function

Assume that the increasing positive concave function f(x) is given, based on which (3.108) yields

the function g(x).
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Assume that a value of 0 < θ < 1 is given. Define the two functions h(ε) and t(ε) as,

h(ε) = g (1− θε) + g (1− θ + θε) , (3.143)

t(ε) = g

(

1− θ

2
ε

)

, (3.144)

where both functions are defined for 0 < ε < 1. Note that h(ε) is symmetric around θ = 1
2 .

The algorithm proposed here demands the two conditions stated below to be satisfied. One,

it is necessary that h(ε) is increasing for ε < 1
2 and decreasing for ε > 1

2 and that hence it only

has one local maximum, at ε = 1
2 . Two, t(ε) must be strictly concave (t′′(ε) < 0). Exploration

of the category of functions which satisfy these two conditions is outside the scope of this thesis.

Here, for notational convenience, we focus on the power-law utility functions. Note that the

proposed method works for any other function which satisfies the above conditions as well.

When an increasing concave utility function is given, which satisfies the above conditions, we

will call the resulting problem as the NSCf−.

A typical set of concave utility functions used in the literature is the class of power functions

defined as,

f(x) = xα, 0 < α < 1. (3.145)

Theorem V proves that given that a condition on α is met, (3.145) will satisfy both conditions

on h(ε) and t(ε).

Theorem V: If,

θ ≤
√

2(1− α), (3.146)

then the conditions on h(ε) and t(ε) will be satisfied.

Proof : To visually observe what the condition on h(ε) implies, we fix α at 0.7 and then

calculate the function for different values of θ and ε, as shown in Figure 3.9. This figure also
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Figure 3.9: Values of h(ε) for α = 0.7 and different values of θ. The solid line shows the loci of the
peak for different values of θ.

shows the loci of the maximizer for different values of θ, namely the solid curves. According to

these curves, we are looking for the value of θ◦ for which if θ ≤ θ◦ then the maximizer is at

the middle. In other words, we are looking for the point at which the loci of the maximizers

branches up into two curves. To find θ◦ for a known value of α, a numerical procedure is carried

out which uses a bisection–style algorithm. The result is shown as the solid line in Figure 3.10.

According to this curve, if the working point, identified by the pair (α, θ), is in the area denoted

by the cross, then the condition on h(ε) will be satisfied.

Carrying out the same operation for the second condition, α = 0.7 is fixed and then the

values of t′′(ε) for different values of θ and ε are calculated, as seen in Figure 3.11. The solid line

in Figure 3.11 shows the set of points for which t′′(ε) = 0, the existence of which indicates that

there are values of ε satisfying t′′(ε) > 0. Using another bisection–style algorithm, the value of

θ◦, similar to the one calculated for h(ε), for each value of α are computed.

It is observed that in the case of f(x) defined as (3.145), the two curves are identical. Note

that the same may or may not be true for other definitions of f(x). Analysis of this issue is

outside the scope of this thesis.

Collecting the results produced for the two functions h(ε) and t(ε), we draw the curve shown

in Figure 3.10. As mentioned before, any working point located in the area denoted by the cross
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Figure 3.10: If the (α, θ) pair is in the area denoted by the cross then the conditions on h(ε) and t(ε)
will be satisfied.

Figure 3.11: Values of t′′(ε) for α = 0.7 and different values of θ. The solid line shows the loci of points
for which t′′(ε) = 0.
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will satisfy the two conditions. For convenience, the curve is approximated by a line, shown as

a dashed line in Figure 3.10 �

Similar to the concept of extension, defined in Section 2.3, we define a contracting pair, and

also a contraction. This way, if a potential solution could produce another one in which,

∣

∣x⋆i − x⋆j
∣

∣ < |xi − xj | , (3.147)

then we will call i and j a contracting pair and the situation will be called a contraction.

Theorem VI: In the solution to the NSCf−, no contraction is possible.

Proof : Fixing xk for k 6= i, j, the problem reduces to maximizing,

∆(xi, xj) = g

(

1 + T − xi
1 + T

)

+ g

(

1 + T − xj
1 + T

)

, (3.148)

subject to xi + xj = t. Writing t = θ(T + 1) we have,

θ ≤ 2ω. (3.149)

Also, we write xi = εt and also xj = t− xi = t− εt. Now, we have,

∆(xi, xj) = h

(

xi
xi + xj

)

, (3.150)

which using Theorem V shows that a contraction will produce a better solution, if (3.149)

complies with (3.146) �

Lemma V For the conditions on h(ε) and t(ε) to be satisfied it is sufficient to have α+
√

2ω ≤

1.

Proof : Routine manipulation of (3.149) and (3.146) gives the proof �

Using Theorem VI the following lemmas are provable.

Lemma VI: In the solution to the NSCf−, if xi is at the beginning, no xj can be not at the

beginning. Thus, if one xi is at the beginning, all others will be at the beginning as well.
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Proof : We use the same graphical visualization used in Section 2.3. In fact, we show that

xi being at the beginning while xj is at the end results in a contraction. The two possible cases

are shown below.

xj :
[

ϕ(1 + T ) · · · · · · · · · · · · ← × · · · · · · · · · · · · · · · l̃j
]

xi :
[

ϕ(1 + T )× → · · · · · · · · · · · · · · · · · · · · · · · · l̃i
] ,

xi :
[

ϕ(1 + T )× → · · · · · · · · · · · · · · · · · · · · · · · · · · · l̃i
]

xj :
[

ϕ(1 + T ) · · · · · · · · · ← × · · · · · · · · · · · · · · · l̃j
] .

Similarly, it can be shown that xj cannot be at the end.

Lemma VII: In the solution to the NSCf−, if xi is at the end, for j > i, xj will be at the

end, too.

Proof : There are two possible situations in which for j > i, xi is at the end but xj is not

at the end, both of which result in contractions.

xi :
[

ϕ(1 + T ) · · · · · · · · · · · · · · · · · · · · · · · · · · · ← ×l̃i
]

xj :
[

ϕ(1 + T )× → · · · · · · · · · · · · · · · · · · · · · · · · l̃j
] ,

xi :
[

ϕ(1 + T ) · · · · · · · · · · · · · · · · · · · · · · · · · · · ← ×l̃i
]

xj :
[

ϕ(1 + T ) · · · · · · · · · · · · × → · · · · · · · · · · · · l̃j
] �

Lemma VIII: In the solution to the NSCf−, if xi and xj are at the middle, xi = xj .

Proof : There are two possible situations in which j > i, xi is at the end, and xj is not at

the end, both of which are contractions. One of them is shown below, and the other one is very

similar.

xi :
[

ϕ(1 + T ) · · · · · · · · · · · · · · · ← × · · · · · · · · · · · · l̃i
]

xj :
[

ϕ(1 + T ) · · · · · · · · · × → · · · · · · · · · · · · · · · l̃j
] �
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Theorem VII: The solution to the NSCf− has the following structure,

~x = (xk, · · · , xk, lk+1, · · · , lM ) . (3.151)

Proof : Referring to Lemmas VI, VII, and VIII, this is the only possible case �

Theorem VII reduces the problem to finding the proper k and xk. The next step is taken in

Theorem VIII, which gives necessary and sufficient bounds for xk.

Theorem VIII: In the solution to the NSCf−,

k ≤ 1

ϕ
. (3.152)

Also, if k 6= 0 is known, it is both necessary and sufficient for xk to satisfy mink ≤ xk ≤ maxk,

where,

maxk = min











































Xmax − L
k

1
∣

∣

1
ω
− k
∣

∣

(L+ 1)
1

1−
[

k ≥ 1
ω

]

lk
1

k

(

1

ϕ
lM − (L+ 1)

)











































, (3.153)

mink = max















lk+1

1
1
ϕ
− k

(L+ 1)















. (3.154)

Here,

L =
M
∑

i=k+1

li. (3.155)

Proof : Using (3.151) we know that,

T = kxk + L. (3.156)
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Routine work on the set of all the conditions provides the proof �

While Theorem VIII provides bounds for xk, the actual value of xk is still unknown. To

facilitate the search for xk, Theorem IX proves that either Golden Search [121] is able to find

the proper solution or that the solution is known in closed form.

Theorem IX: If in the solution to the NSCf−, k 6= 0 is known, either Golden Search can

spot the optimal xk, or xk is at one of the boundaries.

Proof : We have,

Ĉ (xk) =
M
∑

i=1

g

(

1 + T − xi
1 + T

)

, (3.157)

which using (3.151) and (3.156) gives,

Ĉ (xk) = kg

(

(k − 1)xk + β

kxk + β

)

+
n
∑

i=1

g

(

kxk + βi
kxk + β

)

. (3.158)

Here n = M − k, β = L+ 1, and βi = L+ 1− li+k. Note that,

0 < β1 < β2 < · · · < βn < β. (3.159)

Derivation shows that,

∂Ĉ

∂xk
=

1

(kxk + β)2

[

−kβg′
(

(k − 1)xk + β

kxk + β

)

+

n
∑

i=1

k(β − βi)g′
(

kxk + βi
kxk + β

)

]

. (3.160)

Thus, if for any xk,
∂Ĉ
∂xk

is zero, so will be,

C̃(xk) = −βg′
(

(k − 1)xk + β

kxk + β

)

+

n
∑

i=1

(β − βi)g′
(

kxk + βi
kxk + β

)

. (3.161)

We also have,

∂C̃

∂xk
=

1

(kxk + β)2

[

β2g′′
(

(k − 1)xk + β

kxk + β

)

+

n
∑

i=1

k(β − βi)2g′′
(

kxk + βi
kxk + β

)

]

, (3.162)
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Ĉ ′(mink) < 0 Ĉ ′(mink) > 0
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Figure 3.12: The four possibilities for Ĉ(xk). The candidates for the optimal solution are highlighted
by circles.

which according to the concavity of t(ε) is always negative. Thus, C̃(xk) has at most one

zero–crossing in the regarding domain. Hence, ∂Ĉ
∂xk

becomes zero at most once. Looking at the

values of Ĉ ′(xk) at the two ends of the boundary, given in (3.153) and (3.154), there are four

possibilities, as shown in Figure 3.12. Note that in the cases shown in Figures 3.12–a, b, and

d, the optimal point is one of the boundaries. In contrast, the case shown in Figure 3.12–c

represents a unimodal concave function, for which Golden Search is able to approximately find

the maximizer �

Based on these results, we propose the algorithm the NSCf−, as described in Figure 3.13.

Analysis shows that if the relative precision of %0.01 is desired, Golden Search will need 20

function calculations in each run. Then, the maximum computational cost of the proposed

algorithm, assuming that the Goldean search is utilized for every k, will be 20(τf + 3)M2 flops.

Here, τf is the cost of calculating f(x) for one x. In the case of (3.145), the computational cost

will equal 80M2. Note that this is a maximum bound because not for every value of k the case

shown in Figure 3.12–c will occur.
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1. Compute Xmax using (2.11) and ~l using (2.9).

2. Compute ϕ and ω using (2.5) and (3.6).

3. Report ‘‘Error’’ if ω < ϕ.

4. If α+
√

2ω > 1 report ‘‘Error’’.

5. Set ~x = (l1, · · · , lM ) and check if it complies with all the

constraints. If so, calculate Ĉ(~x) and store it accompanied

by ~x.

6. For all k from 1 to min
{

M,ϕ−1
}

do the followings,

(a) Compute L using (3.155).

(b) Compute maxk and mink using (3.153) and (3.154),

respectively.

(c) If not maxk ≥ mink ≥ 0 then ignore this k.

(d) Compute β and ~β using (3.128) and (3.129), respectively.

(e) Calculate Ĉ ′(mink) and Ĉ ′(maxk) using (3.160) and decide

which one of the options shown in Figure 3.12 has occurred.

i. Set xk = mink.

ii. Set xk = mink if Ĉ(mink) > Ĉ(maxk). Otherwise xk =
maxk.

iii. Apply Golden Search on (3.158) in [mink,maxk] to find

xk.

iv. Set xk = maxk.

(f) Produce ~x using (3.151) and store it accompanied by Ĉ(~x).

7. Find the largest value of Ĉ produced at the above and retrieve

the corresponding ~x.

8. Compute ~p, using (2.6), and return them as well as Ĉ.

Figure 3.13: Details of the algorithm NSCf−.
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To compare the share of different mobile stations in the aggregate capacity, we use the

capacity shares, as well as the ratio unfairness value, which we conveniently call the unfairness.

Note that while in (1.32) the capacity share of the i–th mobile station was defined as its capacity

over the aggregate capacity, in the existence of a utility function a more general definition is

used,

C̃ ′
i =

f (Ci)

Ĉ
. (3.163)

Also, the unfairness of the system is defined as,

f ′ =
f (Cmax)

f (Cmin)
. (3.164)

Thus we have,

f ′ ≤ f (− log2(1− ω))

f (− log2(1− ϕ))
. (3.165)

In the case of a power utility function,

f ′ ≤
(− log2(1− ω)

− log2(1− ϕ)

)α

, (3.166)

which is less than the unfairness of the equivalent NSC (see Section 3.1.5).

3.5 Multiple–Class Systems (MSC)

The existence of different services in modern wireless systems has created the need for defin-

ing different classes of service [76]. This, for example, means potentially different guaranteed

minimum QoS levels for different mobile stations. Moreover, different mobile stations may have

different significances to the service provider, for example because of their premium rates. The

fact that the constraints are met at different points for different mobile stations makes the ap-

plication of many of the methods developed previously impossible, unless changes are made to
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them to fulfill the new demand. This is essentially because a majority of the previous algorithm

were designed for the case in which all the mobile stations reside in the same class [71, 73].

In this section, we analyze the problem of maximizing the aggregate capacity of the reverse

link in a multiple–class CDMA network. The aggregate capacity here is defined as the weighted

summation of the capacities of a group of mobile stations. Here, we consider the case in which

there are different minimum SIR constraints for different mobile stations. The problem analyzed

here also includes a maximum aggregate received power constraint and different limits on the

transmit powers of different mobile stations. Furthermore, each mobile station has its own

maximum capacity constraint. We will show how this problem can be approximately solved

using linear or quadratic programming.

The rest of this section is organized as follows. First, in Section 3.5.1, the problem formulation

is presented. Then, a set of substitute variables are defined in Section 3.5.2, from which, in

Section 3.5.3, two approximations for the objective function are derived. These approximations

are used for generating the canonical representations depicted in Section 3.5.4. Then, after

the issue of the addition of other constraints into the problem is addressed in Section 3.5.5,

Section 3.5.6 presents the proposed algorithms as well as a cost analysis.

3.5.1 Problem Formulation

In this section we consider the problem defined as maximizing,

C =
M
∑

i=1

αiCi, αi > 0, (3.167)

subject to,











































γi ≥ γmini ,∀i,

Ci ≤ Cmaxi ,∀i,
M
∑

i=1

pigi ≤ Pmax,

0 ≤ pi ≤ pmaxi ,∀i.

(3.168)
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Here, the constants γmini , Cmaxi , and pmaxi are the minimum SIR, the maximum capacity, and the

maximum transmission power of the i–th mobile station, respectively and αi is the significance

of mobile station i to the network. Through grouping the mobile stations into classes of identical

values for these parameters this model will be applicable to a multiple–class scenario.

Setting αi = 1, γmini = γ, Cmaxi = η, and pmaxi = pmax converts this problem to the single–

class problem titled as the NSC in Section 3.1. In Section 3.1.3 an algorithm is proposed which

solves the NSC in an M–station cell in O(M3) flops.

The goal of the rest of this section is to solve the more generalized problem of maximizing

(3.167) subject to (3.168), in which different mobile stations not only have different significances,

denoted by different values of αi, but also have their own individual constraints. In these

circumstances, the mathematical method developed in Chapter 2 and used for tackling the NSC

(Section 3.1) and its single–class generalizations (see Section 3.2 for example) will not work,

because the constraints are now specific to the mobile stations and therefore the methodology

developed previously will fail.

3.5.2 Substitute Variables

Here, we propose a new set of substitute variables and then rewrite the optimization problem,

using approximations, as a linear or a quadratic programming problem.

Define the new set of variables,

ϕi =
γi

1 + γi
=

pigi
M
∑

j=1

pjgj + I

,∀i. (3.169)

Derivation shows that,

Ci = − log2 (1− ϕi) , (3.170)

pigi = I
ϕi

1−
M
∑

j=1

ϕj

. (3.171)
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Thus, if
∑M

i=1 ϕi < 1, a positive ~ϕ will produce a positive ~p.

Using (3.169), the conditions given in (3.168) can be rewritten as linear constraints for ~ϕ as,







































ϕmini ≤ ϕi ≤ ϕmaxi ,∀i,
M
∑

i=1

ϕi ≤
Xmax

Xmax + 1
,

li

M
∑

j=1

ϕj + ϕi ≤ li,∀i.

(3.172)

Here,







































ϕmini =
γmini

γmini + 1
,

ϕmaxi = 1− 2−C
max
i ,

Xmax =
Pmax

I
,

li =
pmaxi gi
I

.

(3.173)

Note that the second condition in (3.172) results in
∑M

i=1 ϕi ≤ 1, satisfying the condition needed

for (3.171) to produce a positive ~p. Defining,

A =







~11×M

1M×M + diag

[

1

l1
, · · · , 1

lM

]






, (3.174)

~b =







Xmax

Xmax + 1

~1M×1






, (3.175)

the set of inequalities given in (3.172) can be written as,











~ϕmin ≤ ~ϕ ≤ ~ϕmax,

A~ϕ ≤ ~b.
(3.176)

While we will use (3.176) as the set of constraints for the optimization problem, to be given

90



Chapter 3. Extensions to Single–Cell 3.5. Multiple–Class Systems (MSC)

later in the section, this set of inequalities can also be used for identifying the feasible region for

~ϕ. This issue is not discussed in this thesis.

3.5.3 Approximation of the Objective Function

The depiction of the objective function in terms of ~ϕ, in its present form includes fractional

and logarithmic terms. Thus, we devise two methods, a linear and a quadratic one, in order to

approximate C as a first–degree or a second–degree function of ~ϕ. With the linear representation

of the constraints, given in (3.176), this will make the application of standard linear and quadratic

programming methods to the problem analyzed here possible.

For small γi, We have,

Ci = log2 (1 + γi) ≃
1

ln2
γi ≃

1

ln2
ϕi. (3.177)

The approximation used here can be written as,

ln(1 + x) ≃ x

1 + x
, x ∈ [γ, 2η − 1], (3.178)

and yields a linear approximation of Ci in terms of ϕi. A more appropriate approximation is

given below,

Ci ≃
1

ln2
γi =

1

ln2

ϕi
1− ϕi

≃ 1

ln2
ϕi (1 + ϕi) . (3.179)

This is a second order approximation of Ci in terms of ϕi and is based on the following approx-

imation,

ln(1 + x) ≃ x

1 + x

(

1 +
x

1 + x

)

, x ∈ [γ, 2η − 1]. (3.180)

The appropriateness of the two approximations demonstrated in (3.178) and (3.180) are

investigated in Figure 3.14. Here, the nominal values of γ = −30dB and η = 0.3 are used,
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Figure 3.14: Comparison of the exact form with the two different approximations given in (3.178) and
(3.180). The shaded areas indicates the working point. (a) The values. (b) Relative error.

shown as the shaded area. Based on Figure 3.14–(b), both approximations induce less than

10% error. Note that as pi increases, and thus so do γi and ϕi, the error induced by either

approximation goes up. However, the second order approximation is always more accurate than

the linear approximation (see Figure 3.14–(a)). It is also important to emphasize that while the

linear approximation is conservative, i.e. it produces smaller values than the exact formulation,

the second order formula approximates the capacity by a larger value. Therefore, the second

order approximation overestimates the aggregate capacity which it attempts at maximizing of.

3.5.4 Canonical Representation

We use the linear approximation, given in (3.177), to rewrite the objective function as,

C ≃ 1

ln2

M
∑

i=1

αiϕi = ~fT ~ϕ. (3.181)

Here,

~f =
1

ln2
~α. (3.182)
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Similarly, the quadratic approximation, given in (3.179), results in,

C ≃ 1

ln2

M
∑

i=1

αi
(

ϕi + ϕ2
i

)

=
1

2
~ϕTH~ϕ+~fT ~ϕ, (3.183)

where,

H =
2

ln2
diag [α1, · · · , αM ] . (3.184)

The maximization of either (3.181) or (3.183) should be carried out subject to the constraints

given in (3.172), using linear or quadratic programming, respectively. We call these two algo-

rithms the M1SC and the M2SC, respectively. These algorithms will be explicitly presented in

Section 3.5.6.

3.5.5 Addition of Other Constraints

The approximations proposed here are also helpful when a a new constraint is to be added to

the problem. For a better comparison, the reader is referred to the case of adding the new

constraint to the NSC, addressed in Section 3.2, which led to the definition of the N+SC. There,

to tackle the unfairness of the solution to the NSC, a capacity share constraint was added to

the problem, as,

C̃i =
Ci
C
≤ 1

µ

1

M
, 0 < µ < 1. (3.185)

Adding this constraint to the NSC almost quadrupled the code complexity of the solver (see

Section 3.2.4). Here, we demonstrate the straightforward approach which yields the addition of

the new constraint to the approximate problems.

Using (3.167), Equation (3.185) can be approxmiated as,

M
∑

j=1

αj ~ϕj ≥Mµϕi,∀i. (3.186)
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This translates into,

(

Mµ~IM×M − ~1M×1~α
T
)

~ϕ ≤ ~0M×1. (3.187)

This new constraint can now be added to either of the linear or quadratic approximations by

writing the equivalent of (3.174) as,

A =













~11×M

1M×M + diag

[

1

l1
, · · · , 1

lM

]

Mµ~IM×M − ~1M×1~α
T













, (3.188)

and the equivalent of (3.175) as,

~b =













Xmax

Xmax + 1

~1M×1

~0M×1













. (3.189)

We argue that the addition of any constraint which can be written as linear function of ~ϕ is as

straightforward as this case is.

3.5.6 Details of the Proposed Algorithms

Using the developed formulation, the two algorithms the M1SC and the M2SC can be written

as the three steps shown in Figure 3.15.

Note that, as the matrix H, defined in (3.184), is positive–definite, the computational cost

of the M2SC is polynomial [122]. The linear programming–based approach, namely the M1SC,

will take up polynomial time as well [123].

3.6 Generalized MSC (MSCανLi)

The MSC and its ancestors all have particular dependence on the structure of the SIR given

in (1.6). However, in the literature, more appropriate models for the SIR exist, many of which
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1. Generate A using (3.174), ~b using (3.175), ~f using (3.182), and

H using (3.184).

2. Solve either ~ϕ=linprog(~f,A,~b,~ϕmin,~ϕmax), for the case of the

M1SC, or ~ϕ=quadprog(H,~f,A,~b, ~ϕmin,~ϕmax), for the case of the

M2SC.

3. Calculate ~C using (3.170), ~p using (3.171), and C using

(3.167).

Figure 3.15: Details of the algorithms the M1SC and the M2SC.

alter its conventional structure and thus make the previously developed methods fail. Some of

these additions to the SIR model are presented in Section 1.3.2.

In this section, we incorporate the two parameters of α and ν as well as ~L into the MSC

problem. As a result, and in order to provide a solution to the new problem, which we call

the MSCανLi , a new methodology has to be developed. This is mainly because the existence

of the factors αν and Li makes the constant–T method developed for solving the CSC fail. In

this section we will propose a transformation which generates an imaginary problem out of the

given MSCανLi . This imaginary problem is solvable using a generalized variant of the previously

developed MSC. We then present the procedure for calculating the solution to the problem in

hand using the one computed for the produced imaginary problem.

The rest of this section is organized as follows. First, in Section 3.6.1, the MSC algorithm,

introduced in Section 3.5 is generalized. This generalization is used in Section 3.6.2 for implant-

ing a more accurate model for the SIR inside the objective function. Then, in Section 3.6.3 some

necessary mathematical tools are developed and, finally, in Section 3.6.4 the procedure through

which the new problem can be solved is proposed.

3.6.1 Generalizing the MSC to the MSC⋆

As will be shown in Section 3.6.2, the MSC has to be generalized further in order to have the

maximum capacity–share constraints be specific to the mobile stations as well. To comply with
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this need, we rewrite (3.185) as,

C̃i ≤
1

µi

1

M
, 0 < µi < 1. (3.190)

Derivation shows that this new set of constraints can be added to the optimization problem

through rewriting (3.188) as,

A =













~11×M

1M×M + diag

[

1

l1
, · · · , 1

lM

]

Mdiag [µ1, · · · , µM ]− ~1M×1~α
T













, (3.191)

For notational convenience, we call this problem the MSC⋆.

3.6.2 Solving the MSC⋆

Using,

γi =
Lipigi

I + αν
M
∑

j=1,j 6=i

pjgj

, (3.192)

we know that,

1 + γi =

I + αν
M
∑

j=1

pjgj + (Li − αν) pigi

I + αν

M
∑

j=1,j 6=i

pjgj

. (3.193)

For the implications of the particular structure of (3.193) refer to Section 2.3 where the constant–

T method (T = I +
∑M

j=1 pjgj) is developed and then used for dealing with the CSC and the

NSC. Nevertheless, the presence of extra terms in the nominator of (3.193) prohibits the use of

the previously developed method.
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Consider rewriting (3.192) as,

γi =
Li
αν

pigi

1

αν
I +

M
∑

j=1,j 6=i

pjgj

. (3.194)

Now, we define

χi =
Li
αν

, χ =
1

αν
, Î = χI, (3.195)

and rewrite (3.194) as,

γi = χiγ̂i, (3.196)

where,

γ̂i =
pigi

Î +
M
∑

j=1,j 6=i

pjgj

. (3.197)

As will be shown in Section 3.6.3, log2(1 + γi) can be approximated as a constant multiplier of

log2(1 + γ̂i), and therefore, as (3.197) has the same structure as (1.6), the generalized problem

can be approximately solved using an imaginary problem which has the structure the methods

already developed in this thesis are capable of dealing with. The details of this process, as well

as the utilized transformations, are presented in Section 3.6.4.

3.6.3 The Correction Function ρ(χ)

As discussed in Section 3.6.2, the addition of new coefficients to either the nominator or the

denominator of the SIR disrupts the application of the constant–T method developed earlier.

However, due to the particular structure of the Ci–γi relationship, a linear approximation of

log2(1 + χγ) in terms of log2(1 + γ) can provide a method for reducing the new problem to
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one which is solvable using a method already developed in this thesis (as will be discussed in

Section 3.6.4). This section is about this approximation.

Using first order Taylor Series approximation of ln(1 + x) ∼ x, we can write,

log2(1 + χγ) ≃ 1

ln(2)
χγ ≃ χ log2(1 + γ). (3.198)

Here, γ and χγ are assumed to be small enough.

The approximation given in (3.198) is based on two consecutive linear approximations of

logarithmic terms. Therefore, especially in the event of χ being large, the approximation may

produce unacceptable values. However, due to the particular structure of the objective function

and the constraints, a correction term ρ can be included in the approximation in order to yield

more accuracy through using,

log2(1 + χγ) ≃ χρ log2(1 + γ). (3.199)

The choice of the best value of ρ for any particular χ is the main purpose of this section. Here,

we define the correction function ρ(χ) as the one which produces the value of ρ which for a given

χ minimizes the mean–square error of the approximation given in (3.199). In other words, ρ(χ)

can be formally defined as,

ρ(χ) = argρ min

∫ γmax

γmin

[log2 (1 + χγ)− χρ log2 (1 + γ)]2 dγ. (3.200)

Here, γmin and γmax denote the range of values γ can accept. We will discuss this issue later.

Using Leibniz Integral Rule, Equation (3.200) yields,

ρ(χ) =

∫ γmax

γmin

log2 (1 + χγ) log2 (1 + γ) dγ

χ

∫ γmax

γmin

(log2 (1 + γ))2 dγ

. (3.201)

In practice, the integrals are numerically calculated using recursive Adaptive Simpson Quadra-

ture within an error of 10−6.
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Figure 3.16: Values of ρ(χ) for a nominal range of χ. Solid line shows the values given by (3.201) and
the dashed line represents (3.204).

Figure 3.17 demonstrates the case of χ = 7.5, for which Equation (3.201) yields ρ = 0.9332.

In Figure 3.17–(a), the solid line shows the original function and the dotted line represents the

basic approximation given in (3.198). While this approximation yields more error as γ increases,

the dashed line, which represents the improved form given in (3.199), produces more accurate

results in most cases (see Figure 3.17–(b)). A comparative analysis of the relative error induced

by the two functions is given in Figure 3.17–(c). As seen here, the introduction of the correction

term cuts the maximum relative error in the working range in almost half. The solid line in

Figure 3.16 shows the values of ρ(χ) for a nominal range of χ.

The calculation of ρ(χ) as given in Equation (3.201) is based on the computation of two

integrals. Therefore, the existence of an alternative closed form for ρ(χ) could potentially result

in reducing the computational complexity of the algorithm which utilizes this function. Here,

we suggest the alternative function ρ̃(χ) by proposing an approximate closed form for (3.201).

Approximating ln(1 + γ) by γ, and using (3.201), we write,

ρ(χ) ≃ ρ̃(χ) =
3

χ
(

γ3
max − γ3

min

)

∫ γmax

γmin

γ ln (1 + χγ) dγ. (3.202)

Now, using a substitute variable we write,

ρ̃(χ) =
3

χ3
(

γ3
max − γ3

min

)

∫ 1+χγmax

1+χγmin

(τ − 1) ln τdτ, (3.203)
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Figure 3.17: The case of χ = 7.5. (a) The original function compared to the two approximations. (b)
The absolute error induced by the two approximations. (c) The relative error induced by
the two approximations.
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and thus derive,

ρ̃(χ) =

(

1

2
τ2 ln τ − τ ln τ − 1

4
τ2 + τ

)

∣

∣

∣

∣

∣

1+χγmax

1+χγmin

χ3
(

γ3
max − γ3

min

) . (3.204)

The dashed line in Figure 3.16 shows the values of ρ̃(χ) for a nominal range of values of χ.

In a practical implementation, both (3.201) and (3.204) depend on the two values of γmin

and γmax. These values indicate the range of values the SIR can accept within the framework

of the problem. As it will be shown in Section 3.6.4, for solving the problem devised and solved

in this section, there is need for the calculation of ρ for M different values of χ. Therefore, it is

important to realize that the bounds γmin and γmax are in fact the practical bounds on γ̂i for

which γi lies within what the parameters allow for (as described in Section 3.6.2). Therefore,

defining γ◦min and γ◦max as the range for the SIR given by the system parameters, we have,

γmin =
1

χ
γ◦min, (3.205)

γmax =
1

χ
γ◦max. (3.206)

In practice, γ◦min is a given parameter for any particular problem and γ◦max is calculated using

the given Cmax,

γ◦max = 2Cmax − 1. (3.207)

Using (3.205) and (3.206), we rewrite (3.201) and (3.204) as,

ρ(χ) =

∫ 1

χ
γmax

1

χ
γmin

log2 (1 + χγ) log2 (1 + γ) dγ

χ

∫ 1

χ
γmax

1

χ
γmin

(log2 (1 + γ))2 dγ

. (3.208)
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Figure 3.18: Relative deviation of the values of ρ produced by the approximate form given in (3.209),
compared to the what is generated by the exact formulation given in (3.208).

ρ̃(χ) =

(

1

2
τ2 ln τ − τ ln τ − 1

4
τ2 + τ

)

∣

∣

∣

∣

∣

1+γmax

1+γmin

γ3
max − γ3

min

. (3.209)

Note that the superscript ◦ is dropped for the sake of notational convenience but the bounds for

the integrals in (3.208) are the original boundaries of the SIR as given by the system parameters.

Also note that Equation (3.209) is independent of χ. This issue can be observed in Figure 3.16

as well, where for γmin = −30dB and Cmax = 0.3, we have ρ̃(χ) ≡ 0.9225, independent of χ.

Note that the more intuitive depiction of (3.199) as,

log2(1 + γ) ≃ χρ log2

(

1 +
1

χ
γ

)

, (3.210)

gives a better understanding why the approximation still holds as χ increases.

Comparing the two functions ρ(χ) and ρ̃(χ), and as seen in Figure 3.18, the application of

the approximate form given in (3.209) causes less than 8% relative error in the working range.

Practical implementation of the two formulations, however, shows a drastic reduction of the

elapsed time from about 1ms, for the exact form given in (3.208), compared to less than 0.01ms

for the approximate formulation given in (3.209).

As an overall measure of integrity, Figure 3.19 shows the error bounds generated by the
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Figure 3.19: Error bounds generated in the calculation of the capacity using the approximation given in
(3.199). For details refer to the text.

approximation given in (3.199). Here, the dark lines represent the exact formulation for ρ(χ),

given in (3.208), and the gray lines show the outcome of using the approximation given in (3.209).

For each case, the solid lines present the mean relative error, while the dashed lines indicate the

mean plus the standard deviation curves and the mean minus the standard deviation curves.

As observed here, for χ > 10, the two formulations produce very similar results (the same effect

seen in Figure 3.18). Furthermore, the relative error induced by using the more precise value

of ρ, given by (3.208), is normally less than 5%. The approximate formulation for ρ, given by

(3.209) on the other hand, causes a relative error of about 8% for smaller values of χ.

The correction term ρ developed here is used in Section 3.6.4 for producing an approximate

solution to the generalized multiple–cell problem as well.
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3.6.4 Application of ρ(χ) to Solving the Generalized Problem

Consider the problem defined as maximizing (3.167) subject to the revised version of (3.168)

combined with (3.190) collectively written as,



























































γi ≥ γmini ,∀i,

Ci ≤ Cmaxi ,∀i,

0 ≤ pi ≤ pmaxi ,∀i.

C̃i =
Ci
C
≤ 1

µ

1

M
, 0 < µ < 1

αν
M
∑

i=1

pigi ≤ Pmax,

(3.211)

Here, we consider the definition of the SIR as given in (3.192) and use (3.195) to yield (3.196)

and (3.197). Through this procedure, we produce an imaginary problem which has the MSC⋆

structure discussed in Section 3.6.1. We will denote the parameters related to this problem with

a “hat” (γ̂ for example). All the variables and parameters in the imaginary problem are identical

to their counterparts in the original problem unless specified differently.

Routine derivation shows that P̂max = χPmax, α̂i = ρiχiαi, and,

γ̂mini =
1

χi
γmini , (3.212)

where ρi = ρ(χi). Also we have µ̂i = ρiχiµ and,

Ĉmaxi =
1

ρiχi
Cmaxi . (3.213)

Now, the imaginary problem is a MSC⋆ and thus can be solved using the method developed

in Section 3.6.1. Then, the resulting values of pi represent the corresponding values in an

approximate solution to the original problem. The values of Ci, however, will be recalculated

using the exact formulation as a final refinement stage. We call this method MSCανLi .
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Chapter 4

Multiple–Cell Problem (MC)

In this chapter, the multiple–cell problem, as formulated in Section 1.3.3, will be analyzed.

This analysis is essentially geared towards applying the two mathematical tools developed in

Sections 3.5.3 and 3.6.3 on the problem in order to produce an approximate solution for it using

quadratic programming.

This chapter is organized as follows. First, in Section 4.1 a set of substitute variables will pre-

sented. Subsequently, these variables are used in Section 4.2 for transforming the constraints into

linear forms. Using a similar method, in Section 4.3, the objective function will be represented

as a quadratic function. Both these transformations take advantage of a set of approximations

and estimations. Then, Section 4.4 presents the details of the proposed algorithm.

4.1 Substitute Variables

Structural differences of γki, given in (1.26), and its single–cell counterpart γi, given in (1.6),

prohibit the direct application of the substitute variables as outlined in Section 3.5.2. Therefore,

in order to restructure γki in the way that makes the definition of appropriate substitute variables

possible, Equation (1.26) will be rewritten and the ρ(·) function defined in Section 3.6.3 will be

taken advantage of.
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We first rewrite (1.26) as,

γki =
Lki
αν

ζkipkigki

I ′k +
K
∑

k′=1



θkk′

Mk′
∑

i′=1

pk′i′g
k
k′i′



− ζ ′kipkigki

. (4.1)

Here, we have defined,

I ′k =
1

αν
Ik, (4.2)

ζ ′ki = 1− 1− ζki
αν

. (4.3)

Note that for α > 0.625, as ζki > 0.75 and ν > 0.4 (typical values taken from the references

cited in Section 1.3.2), ζ ′ki will always be positive.

Continuing with (4.1) we write,

γki = χkiγ
′
ki. (4.4)

Here,

χki =
Lkiζki
ανζ ′ki

, (4.5)

γ′ki =
ζ ′kipkigki

I ′k +

K
∑

k′=1



θkk′

Mk′
∑

i′=1

pk′i′g
k
k′i′



− ζ ′kipkigki

. (4.6)

Note the similarity in the structure of γ′ki, defined in (4.6), and γi, defined (1.6).
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Now, similar to (3.169), we define,

ϕ′
ki =

γ′ki
1 + γ′ki

=
ζ ′kipkigki

I ′k +
K
∑

k′=1



θkk′

Mk′
∑

i′=1

pk′i′g
k
k′i′





. (4.7)

Note that, using (4.4), we have,

ϕ′
ki =

γki
χki + γki

. (4.8)

4.2 Constraints

The second and the third constraints of the multiple–cell problem, as given in (1.29), impose a

minimum and a maximum bound on the γki and the Cki, respectively. By defining,

γmaxki = 2C
max
ki − 1, (4.9)

these two constraints can be encapsulated in one double–bound constraint written as,

γminki ≤ γki ≤ γmaxki ,∀i, k. (4.10)

Now, using (4.8), and by defining,

ϕmin′ki =
γminki

χki + γminki

, (4.11)

ϕmax′ki =
γmaxki

χki + γmaxki

, (4.12)

Equation (4.10) will be written as,

ϕmin′ki ≤ ϕ′
ki ≤ ϕmax′ki ,∀i, k, (4.13)
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or, in vector format,

~ϕmin′ ≤ ~ϕ′ ≤ ~ϕmax′. (4.14)

For addressing the first and the last constraints as listed in (1.29), we need a relationship

similar to (3.171). However, Equation (4.7) has substantial differences with (3.169). These

differences inhibit the use of a direct method. In order to resolve this issue, here, we propose an

approximation.

As mentioned in Section 1.2, the intra–cell interference is in some works modeled as δ times

the inter–cell interference [80]. Here, δ is the loading factor and the values of 0.6 [81] or 0.55 [74]

are suggested for it. Another conservative approximation for δ is somewhere between 0.460 and

0.634 for nominal systems [80]. Adopting this approximate simplification, we rewrite (4.7) as,

ϕ′
ki ≃

ζ ′kipkigki

I ′k + (1 + δ)

Mk
∑

i′=1

pki′gki′

. (4.15)

Now,

Mk
∑

i=1

ϕ′
ki

ζ ′ki
≃

Mk
∑

i=1

pkigki

I ′k + (1 + δ)

Mk
∑

i=1

pkigki

, (4.16)

or, equivalently,

Mk
∑

i=1

pkigki ≃ I ′k

Mk
∑

i=1

ϕ′
ki

ζ ′ki

1− (1 + δ)

Mk
∑

i=1

ϕ′
ki

ζ ′ki

. (4.17)
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Note that, here, the condition,

1− (1 + δ)

Mk
∑

i=1

ϕ′
ki

ζ ′ki
> 0, (4.18)

is necessary for
∑Mk

i=1 pkigki to be positive. We will show that another inequality, which has to

be satisfied as well, in fact guarantees (4.18).

Using the concept of the loading factor, the last constraint in (1.29) can be approximated

as,

αν(1 + δ)

Mk
∑

i=1

pkigki ≤ Pmaxk ,∀k. (4.19)

Now, using (4.17), inequality (4.19) can be rewritten as,

I ′k

Mk
∑

i=1

ϕ′
ki

ζ ′ki

1− (1 + δ)

Mk
∑

i=1

ϕ′
ki

ζ ′ki

≤ Pmax′k ,∀k. (4.20)

Here,

Pmax′k =
Pmaxk

αν(1 + δ)
. (4.21)

Routine derivation reduces (4.20) to,

Mk
∑

i=1

ϕ′
ki

ζ ′ki
≤ Xmax′

k ,∀k, (4.22)

where,

Xmax′
k =

Pmax′k

I ′k + (1 + δ)Pmax′k

. (4.23)
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Note that (4.22) yields,

Mk
∑

i=1

ϕ′
ki

ζ ′ki
<

1

1 + δ
≤ 1,∀k, (4.24)

which satisfies (4.18).

Combining the K constraints of the type given in (4.22) together, for all the cells, we write,

diag
[

~ζ ′1, · · · , ~ζ ′K
]

~ϕ′ ≤ ~Xmax′. (4.25)

Here,

~ζ ′k =
[

ζ ′k1
−1
, · · · , ζ ′kMk

−1
]

, (4.26)

is a Mk × 1 vector and,

~Xmax′ =
[

Xmax′
1 , · · · , Xmax′

K

]T
, (4.27)

is a K × 1 vector.

Returning to (4.15), and using (4.17), we have,

ϕ′
ki ≃

ζ ′ki
I ′k
pkigki

[

1− (1 + δ)

Mk
∑

i′=1

ϕ′
ki′

ζ ′ki′

]

, (4.28)

pkigki ≃ I ′k

ϕ′
ki

ζ ′ki

1− (1 + δ)

Mk
∑

i′=1

ϕ′
ki′

ζ ′ki′

. (4.29)

Using (4.29), we approximate the first constraint in (1.29) as,

ϕ′
ki

ζ ′ki
≤ lki

[

1− (1 + δ)

Mk
∑

i′=1

ϕ′
ki′

ζ ′ki′

]

,∀i, k. (4.30)
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Here,

lki =
pmaxki gki
I ′k

. (4.31)

Further derivation of (4.30) gives,

1

lki

ϕ′
ki

ζ ′ki
+ (1 + δ)

Mk
∑

i′=1

ϕ′
ki′

ζ ′ki′
≤ 1,∀i, k, (4.32)

or in vector format,

[

l−1ζ ′
−1

+ (1 + δ)diag
[

ζ ′1, · · · , ζ ′K
]

]

~ϕ′ ≤ ~1M×1. (4.33)

Here,

l = diag [l11, l12, · · · lKMK
] , (4.34)

and,

ζ ′ = diag
[

ζ ′11, ζ
′
12, · · · ζ ′KMK

]

, (4.35)

are both M ×M matrices and,

ζ ′k = ~1Mk×1
~ζ ′k, (4.36)

is a Mk ×Mk matrix.

Combining (4.25) and (4.33) together we have,

A~ϕ′ ≤ ~b. (4.37)
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Here,

A =







diag
[

~ζ ′1, · · · , ~ζ ′K
]

l−1ζ ′−1 + (1 + δ)diag [ζ ′1, · · · , ζ ′K ]






, (4.38)

~b =







~Xmax′

~1M×1






. (4.39)

4.3 Objective Function

The formulation for the objective function C, given in (1.28), considers a general case in which

each mobile station has its own utility function fki(·). Here, we assume that within the range

of possible capacities, the function fki(C) can be approximated as a second–degree form,

fki(Cki) ≃ αkiCki + βkiC
2
ki. (4.40)

Here, we also assume that both αki and βki are non–negative. This is important in order to

guarantee polynomial computational complexity for the quadratic programming–based solver to

be developed as a result of this analysis.

Now, using (4.4), (1.27) and (3.199) we write,

Cki ≃ χkiρ(χki) log2

(

1 + γ′ki
)

. (4.41)

Using (4.7) and (3.179) we have,

C ′
ki ≃

1

ln2
ϕ′
ki +

1

ln2
ϕ′2
ki. (4.42)

Here,

C ′
ki = log2

(

1 + γ′ki
)

. (4.43)
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Therefore, combining (4.40), (4.41), (4.43), and (4.42), we have,

fki(Cki) ≃ α′
kiϕ

′
ki +

(

α′
ki + β′ki

)

ϕ′2
ki, (4.44)

where

α′
ki =

1

ln 2
αkiχkiρ(χki), (4.45)

β′ki =

(

1

ln 2

)2

βkiχ
2
kiρ(χki)

2, (4.46)

and powers of more than two of ϕ′
ki have been ignored. Note that as both αki and βki are

non–negative, therefore α′
ki + β′ki is non–negative as well.

Using (4.44) and (1.28) we have,

C ≃
K
∑

k=1

Mk
∑

i=1

[

α′
kiϕ

′
ki +

(

α′
ki + β′ki

)

ϕ′2
ki

]

, (4.47)

In other words, defining,

~f = ~α′, (4.48)

as the multiple–cell version of (3.182),

α′ = diag
[

α′
11, α

′
12, · · · , α′

KMK

]

, (4.49)

β′ = diag
[

β′11, β
′
12, · · · , β′KMK

]

, (4.50)

and,

H = 2
[

α′ + β′
]

, (4.51)
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as the equivalent of (3.184) in multiple–cell systems, we have,

C ≃ 1

2
~ϕ′TH~ϕ′ +~fT ~ϕ′, (4.52)

which is the canonical form of the objective function in a quadratic programming problem. Note

that H is positive–definite.

4.4 Details of the Proposed Algorithm

As a result of the discussion given in Sections 4.1, 4.2, and 4.3, the multiple–cell problem

formulated in Section 1.3.3 can be approximately solved by applying quadratic programming for

the maximization of,

C̃ =
1

2
~ϕ′TH~ϕ′ +~fT ~ϕ′, (4.53)

subject to,











~ϕmin′ ≤ ~ϕ′ ≤ ~ϕmax′,

A~ϕ′ ≤ ~b.
(4.54)

The matrices and vectors ~f , H, ~ϕmin′, ~ϕmax′, ~A, and ~b, are defined in (4.48), (4.51), (4.11),

(4.12), (4.38), (4.39) respectively.

After the solution to this problem is produced, then, using (4.29), the optimal ~p will be

calculated.
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Chapter 5

Experimental Results

This chapter contains the experimental results generated through execution of the algorithms

proposed in the previous chapters. The results corresponding to each problem are discussed in

a separate section.

5.1 Classical Single Cell (CSC)

Using the developed CSC algorithm, it takes less than 2ms to solve the CSC in a cell which

contains 100 mobile stations. Here, we first analyze the effects of different parameters on the

behavior of the system, in Section 5.1.1. Then, in Section 5.1.2, we carry out an extensive

fairness analysis.

5.1.1 Effects of Different Parameters

Using a random sequence ~g, similar to what is shown in Figure 1.1–(b), we analyze the effects

of different parameters on the solution to the single–cell problem. The analysis is conducted

as follows. First the values of C, the aggregate capacity, are presented. Then, the unfairness

measures f and f̃ are analyzed. This analysis will be followed in Section 5.1.2 by giving approx-

imations which show how these three values, namely C, f , and f̃ , are related to each other and

what the practical implications of these relationships are.
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Figure 5.1: Results for different number of mobile stations with γ = −25dB and varying I in the CSC.
(a) Aggregate capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.2: Results for different number of mobile stations with γ = −30dB and varying I in the CSC.
(a) Aggregate capacity. (b) Subtractive unfairness. (c) Ratio unfairness.

117



Chapter 5. Experimental Results 5.1. Classical Single Cell (CSC)

0 20 40 60 80 100
0

1

2

3

4

5

6

7

M

R
el

at
iv

e 
A

gg
re

ga
te

 C
ap

ac
ity

 (
C

)

I=−90.4dBm
I=−101.7dBm
I=−113.0dBm
I=−124.3dBm
I=−135.6dBm

0 20 40 60 80 100
0

1

2

3

4

5

6

7

M

S
ub

tr
ac

tiv
e 

U
nf

ai
rn

es
s 

(f
)

I=−90.4dBm
I=−101.7dBm
I=−113.0dBm
I=−124.3dBm
I=−135.6dBm

(a) (b)

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

M

R
at

io
 U

nf
ai

rn
es

s 
(~

f)

I=−90.4dBm
I=−101.7dBm
I=−113.0dBm
I=−124.3dBm
I=−135.6dBm

(c)

Figure 5.3: Results for different number of mobile stations with γ = −40dB and varying I in the CSC.
(a) Aggregate capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.4: Results for different number of mobile stations with and γ = −50dB varying I in the CSC.
(a) Aggregate capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.5: Results for different number of mobile stations with varying I and γ = 0 in the CSC. (a)
Aggregate capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figures 5.1–(a), 5.2–(a), 5.3–(a), and 5.4–(a) show the values of aggregate system capacity

for different number of mobile stations, M , with varying I and γ. The vertical axis in each chart

shows the number of mobile stations. Each graph also presents the effect of choosing between

different candidates for I. As expected, choosing smaller background noise results in a larger

aggregate system capacity. In any situation that the curves stop abruptly, it means that the set

of parameters does not yield any result. Again, as expected, by easing the minimum quality of

service bound, the aggregate system capacity increases. This effect is more significant in larger

values of M , in which case the system becomes significantly partial.

We will first give an analytic justification for this situation. Later, when comparing the

respective unfairness values, we will show how much unfair the system in fact is. To investigate

this effect analytically, we use Figure 5.5–(a). This figure shows that by removing the minimum

quality of service constraint, setting γ = 0, the aggregate system capacity does not change when

the number of the mobile stations increases, except for the case of I = −136dBm. This is due

to the fact that at this situation the system starts to handle one mobile station with maximum

quality of service and to leave no resources for the others. In this situation, we will have,

x2 = · · · = xM = 0, (5.1)

therefore, using (2.7), we have,

C =

(

1 + x1

1 + x1

)M−1( 1 + x1

1 + x1 − x1

)

= 1 + x1 = 1 +
p1g1
I
. (5.2)

Here, the range of p1 is dictated by pmax and Pmax. Hence, we have,

C = 1 +
min {pmaxg1, Pmax}

I
, (5.3)

which is in fact what is seen in Figure 5.4–(a) for the first few values of M and in Figure 5.5–(a)

for all values of M , except for I = −136dBm. We will return to the unfairness curves shortly.

As shown in Figure 5.6–(a), tightening the minimum quality of service bound has a declining

effect on the aggregate system capacity. As M increases this effect is more severe. Finally,
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Figure 5.6: Results for different number of mobile stations with varying γ in the CSC. (a) Aggregate
capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.7: Results for different number of mobile stations with varying I in the CSC. (a) Aggregate
capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.8: Results for different number of mobile stations with varying pmax in the CSC. (a) Aggregate
capacity. (b) Subtractive unfairness. (c) Ratio unfairness.

note that as shown in Figure 5.7–(a) increasing I decreases the aggregate system capacity, as

expected.

The effects of choosing different values of pmax is investigated in Figure 5.8–(a). As expected,

small values of pmax lead to significant decrease in the aggregate system capacity or even makes

the problem infeasible. A similar experiment is carried out in order to investigate the role of

Pmax. As the results shown in Figure 5.9–(a) demonstrate, a very small value of Pmax reduces

the aggregate system capacity, while larger values let the other constraints become active and

control the final outcome.

Summarizing the effects of different parameters on the aggregate capacity, increasing I or

γ has a declining effect. While the first parameter represents the amount of background noise
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Figure 5.9: Results for different number of mobile stations with varying Pmax in the CSC. (a) Aggregate
capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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and may be reduced using better engineering, reducing the second parameter will make the

system more partial. Also, larger values of pmax and Pmax are helpful. These values indicate

the maximum power which one mobile station can afford to transmit at and the maximum

total interference which is tolerated, respectively. Excessive increase of these two parameters is

not practical, due to the fact that increasing pmax with fixed Pmax may not result in a larger

aggregate system capacity, because then the condition of total transmission power will push

the maximum transmission power of each mobile station down. Also, generally, the system

performance decreases as the number of the mobile stations increases. This issue will be looked

at thoroughly in the next sections.

5.1.2 Fairness Analysis

In Figures 5.1–5.9, the first graph shows the aggregate capacity, while the second and the third

graphs show the subtractive and ratio unfairness measures, respectively. Here, we observe that

always the subtractive unfairness curves follow the same trend as the aggregate system capacity

ones do. This issue will be looked at in this section.

Assume that x1 is substantially larger than x2, · · · , xM . For simplicity we assume that there

is a ε > 0 for which,

xi ≃ ε≪ x1,∀i > 1. (5.4)

Hence, we can approximate (1.8) as,

C ≃ log2

{

(

1 + (M − 1)ε+ x1

1 + (M − 2)ε+ x1

)M−1 1 + (M − 1)ε+ x1

1 + (M − 1)ε

}

, (5.5)

C ≃ log2

1 + (M − 1)ε+ x1

1 + (M − 1)ε
. (5.6)

Now, substituting (5.4) into (1.30) yields,

f ≃ log2

1 + (M − 2)ε+ x1

1 + (M − 1)ε
. (5.7)
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Comparing (5.6) and (5.7) proves that at this drastically partial system we will have f ≃ C.

This will describe the similarity of unfairness curves with aggregate system capacity ones if we

can show that in these solutions x1 is substantially larger than the rest of the elements of ~x.

When we analyze the structure of the best ~x in the solution presented here, it is observed

that k defined in (2.26) is always one (it happened in every single experiment shown at the

above). This means that the system is supplying one customer with a very high capacity while

others are kept at the minimum guaranteed quality of service. Note that although by increasing

M the unfairness decreases, so does the aggregate capacity of the system. Hence, increasing M

is not a good practice in this regard.

Here, we have compared the difference between capacities devoted to different customers,

denoted by f , and not the ratio between them, denoted by f̃ . In fact, f̃ curves show non–

meaningful figures of orders of hundreds and more in many settings to give a better picture of

this situation.

We analyze the ratio unfairness measures shown in the third graph in Figures 5.1, 5.2, 5.3,

5.4, 5.5, 5.6, 5.7, 5.8, and 5.9. Note that unless for the case of Figure 5.6–(c), the f̃ curve is

following the same pattern the corresponding f curve does, and hence that of the corresponding

C curve. In fact, f̃ seems to be solely a fixed multiplier of f . Assuming the condition in (5.4)

we will show that this is in fact the case. Using (1.31) and (5.7) we have,

f̃ =
log2

1+(M−1)ε+x1

1+(M−1)ε

log2
1+(M−1)ε+x1

1+(M−2)ε+x1

≃ C

log2

(

1 + ε
1+(M−2)ε+x1

) =
C

log2(1 + γ)
≃ ln 2

γ
C. (5.8)

Here, we have used the fact that for |δ| << 1,

ln(1 + δ) ≃ δ. (5.9)

Here, Equation (5.8) exhibits that if γ is kept constant, then f̃ and C only differ by the fixed,

very large, constant γ−1 ln 2. On the other hand, if γ too changes during the experiment, then

(5.8) shows how f̃ and C are related. The ratio unfairness curves shown in Figures 5.1, 5.2,
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5.3, 5.4, 5.5, 5.7, 5.8, and 5.9 show the situation in which γ is fixed during the experiment.

Analyzing the curves for ln 2
γ
C and f̃ demonstrates that for the case of Figure 5.6–(c), in which

γ does change, Equation (5.8) is in fact valid.

It is worth to mention that, here, values of f̃ of orders of hundreds are observed. This

demonstrates that the solution is utterly unfair, an observation which is in accordance with

what is reported by other researchers [57, 58]. In fact, this unfairness was the main reason

the authors in [71] devised the minimum SIR constraint. We argue that the impracticality of

solution to the CSC comes from the fact the constraints neglect the unfairness of the solution.

Furthermore, the formulation ignores the fact that while a minimum bound for the signal to

noise ratio, and thus for the capacity, is vital, there should also exist a maximum capacity bound.

lack of appropriate constraints on these two important aspects of the problem makes the final

results partial and impractical. This issue has been the main reason for the proposal of the New

Single Cell problem, as discussed in Section 3.1.

5.2 New Single Cell (NSC)

This section presents experimental results gathered through solving the NSC. Using the proposed

algorithm, it takes less than 2ms to solve the NSC in a cell containing 100 mobile stations.

To compare the outcome of the CSC with the new one, we show the result of adding the

new constraint in a sample problem. Table 5.1 shows the values of gi for an example in which

M is equal to 10. This table also shows the solutions to the CSC and the NSC with the set of

parameters given in Section 1.3.1. For each problem, first the pattern of the solution is given.

The given structure of the solution, given in (2.26) and (3.9), for the CSC the NSC, respec-

tively, it is informative to see where the breaking points are eventually placed. The location of

these points in fact informs us of the number of the mobile stations which benefit from larger

capacities. As expected from the results and discussions given in 5.1, the solution generated by

the CSC serves the first mobile station with the maximum possible capacity while the others are

left to the minimum guaranteed amount (log2(1+γ)). When we add the extra Ci ≤ η constraint,
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we are in fact limiting the capacity of the first mobile station. As seen in the solutions to the

NSC, this leads in the spread of the aggregate capacity between more mobile stations. In the

new solution, presented in Table 5.1, nine mobile stations are served at the maximum possible

capacity (either determined by η or li) while the tenth mobile station transmits at a capacity

inside the range.

Table 5.1 also shows the capacity shares of different mobile stations in both problems. It

is evident that the CSC dominantly depends on the first mobile station, while the dependence

of the NSC on different mobile stations is more even. The high dependence of the CSC on one

mobile station is not acceptable in practice if the system is to be deployed in the real world.

As expected both from the analysis and from the set of capacity values, the NSC is more

fair than the CSC. In fact the ratio unfairness measure is about eighty times lower in the NSC

compared to the CSC. Note that here we see the aggregate capacity becoming smaller in the

NSC. This was expected, because by putting the maximum capacity constraint, we have in fact

limited the objective function from going up–hill. By this, we have gained a more fair system.

Here, we in fact see the essential shortcoming of the CSC in detail. In fact, the solution

given by the CSC will not be implementable if the first mobile station denies the high capacity

which is decided for it. On the contrary, the NSC serves nine mobile stations with the highest

possible capacity and then serves one with a midpoint capacity. In addition to its fairness, the

NSC is also capable of supporting the aggregate capacity of above half the CSC.

Using a ~g similar to what is shown in Figure 1.1–(b), we analyze the effects of different

parameters on the solution. To carry out this analysis, first, we present the values of C, the

aggregate capacity. Then, we analyze the unfairness measures f and f̃ .

The first experiment analyzes how selecting between different values of I and γ affects the

system while the number of the mobile stations changes from one to a hundred. It was shown

in 5.1 that as γ decreases the aggregate capacity of the CSC increases. The interpretation

for that effect was that decreasing γ means that the system is less engaged with the majority

and can allocate more resources to a chosen mobile station. It was argued that this is not a

practically acceptable performance.
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Figure 5.10: Results for different number of mobile stations with varying I and γ = −25dB in the NSC.
(a) Aggregate capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.11: Results for different number of mobile stations with varying I and γ = −30dB in the NSC.
(a) Aggregate capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.12: Results for different number of mobile stations with varying I and γ = −40dB in the NSC.
(a) Aggregate capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.13: Results for different number of mobile stations with varying I and γ = −50dB in the NSC.
(a) Aggregate capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figures 5.10, 5.11, 5.12, and 5.13 show the differences in the results generated by the NSC

and the CSC. Here, γ has in fact negligible effect on the aggregate capacity, partly because not

many mobile stations are treated at that low rate. Also, we see that in the NSC the aggregate

capacity does not drop vastly when M increases. For example, looking at Figure 5.13–(a) we

see that in the NSC the aggregate capacity of the new problem drops less than 0.1 when M goes

from 1 to 100 (6.4% of the amplitude). At the same time the CSC results in a drop of 6 (75% of

the amplitude) in the aggregate capacity (see Section 5.1). However, similar to the case of the

CSC, we observe that increasing I does decreas the aggregate capacity. It should be mentioned

that the aggregate capacity of the NSC is almost one third of that of the CSC and the difference

increases vastly when γ reduces. We argue that the high aggregate capacity of the CSC does not

mean that that system is in fact capable of producing that much revenue, because it is relying

on one chosen mobile station which may not in fact exist in reality.

The ratio unfairness of the NSC is less than one tenth of that of the CSC and the gap

increases as γ reduces, because the CSC becomes more partial.

Figure 5.14 shows the case in which γ is zero, meaning that there is no minimum guaranteed

quality of service. In this situation the ratio unfairness increases to more than ten thousand,

still one thirtieth of that of the CSC. Figure 5.15 shows the effects of varying γ. Here, it is

observed that for γ > −80dB the ratio unfairness is within a tactically acceptable interval.

Also, note that the number of the mobile stations has no effect on either the subtractive or the

ratio unfairness curves.

Figure 5.16 shows how varying I affects the solution. Note that increasing I over −130dB

drops the aggregate capacity curves to great extent. Again, contrary to the case of the CSC, the

unfairness curves are independent of the number of the mobile stations. Figures 5.17 and 5.18

show the effects of pmax and Pmax on the solution and, finally, Figure 5.19 shows that decreasing

η decreases the aggregate capacity, because the maximum capacity of each mobile station is then

limited. Moreover, as expected, reducing η decreases the unfairness.

To have a better insight about the NSC and its benefits over the CSC an experiment was

carried out to compare their behavior in the long term. We assume that M = 5 mobile stations
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Figure 5.14: Results for different number of mobile stations with varying I when γ equals zero in the
NSC. (a) Aggregate capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.15: Results for different number of mobile stations with varying γ in the NSC. (a) Aggregate
capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.16: Results for different number of mobile stations with varying I in the NSC. (a) Aggregate
capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.17: Results for different number of mobile stations with varying pmax in the NSC. (a) Aggregate
capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.18: Results for different number of mobile stations with varying Pmax in the NSC. (a) Aggre-
gate capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.19: Results for different number of mobile stations with varying η in the NSC. (a) Aggregate
capacity. (b) Subtractive unfairness. (c) Ratio unfairness.
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Figure 5.20: (a) Pattern of movement of mobile stations used in the simulation. (b) The corresponding
values of gi for different mobile stations over time.

are in a cell and that each mobile station is originally randomly placed inside the cell. We also

assume that each mobile station is a pedestrian and therefore the movements of each mobile

station is modeled as a random walk. Denoting the position of the i–th mobile station at time

t as ~xi(t) we calculate,

~xi(t+ dt) = ~xi(t) + s

[

cos θ

sin θ

]

vdt. (5.10)

Here, θ is a uniform random variable in the interval [0, 2π] and v equals 5km/h [124]. Also, s is

a uniform random variable in the interval [0, 1]. Here, we assume that no mobile station leaves

the cell. Also, we do not consider the ones that enter it. Hence, at each time epoch we normalize

the vectors ~xi(t) which leave the cell as,

~xi(t+ dt) =
R

‖~xi(t− 1)‖~xi(t− 1). (5.11)

This model assumes that the boundaries of the cell inhibit the mobile stations from leaving it.

Selecting values of T = 20s and dt = 100ms and after generating sequences of the random

variables θ and s we produce a pattern of movement for the mobile stations as seen in Figure 5.20–
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Figure 5.21: Transmission power of different mobile stations over time. (a) The CSC. (b) The NSC.

(a). This pattern of movement results in different values of gi over time (see Figure 5.20–(b)).

As a mobile station gets far from the base station the respective value of gi decreases and vice

versa.

Using the movement pattern generated in the above, we analyze the outcome of the CSC

and the NSC in a period of time. First, note that while the system is sampled every 100ms,

the solutions take only 7ms and 36ms for the two problems, respectively. This means that the

system is only being utilized 7% and 36% of the time for the CSC and the NSC, respectively.

Figure 5.21 compares the pattern of transmission powers of different mobile stations over

time. Comparison shows that in the solution to the CSC, there is tendency to force the mobile

stations to have rapid increase and decreases in the power. This phenomenon is mainly due the

fact that the CSC tries to devote almost all the resources to the mobile station which is the

closest to the base station. As the mobile stations move around they compete for this occasion.

Having had this pattern of transmission powers, figure 5.22 shows the resulting capacities of
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Figure 5.22: Capacity of different mobile stations over time. (a) The CSC. (b) The NSC.
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Figure 5.23: Capacity share of different mobile stations over time. (a) The CSC. (b) The NSC.

different mobile stations over time. The curves for the CSC show that the mobile stations are

mostly oscillating between the two situations of minimum capacity and a very high one. This

provides more evidence that the CSC does tend to serve one mobile station at a very high

capacity. On the other hand, the NSC keeps the capacity of different mobile stations between

the two specified bounds. The important observation here is that in the solution to the NSC,

the capacity of none of the mobile stations is ever squeezed down to the minimum guaranteed

limit (this may not always be true). The reduction in the oscillation of the capacities in the

NSC is worth to mention, as well.

To better understand the difference between the two problems, we compare the capacity

shares of different mobile stations in the two solutions. As the capacity shares of the mobile

stations for each problem at any moment sum to one, we show their values using overlaid bar

graphs (see Figure 5.23). As anticipated, we can see in Figure 5.23–(a) that almost all the

capacity at each moment is devoted to the closest mobile station (compare Figure 5.23–(a)

with figures 5.20–(b)). On the contrary, the NSC only increases its dependency upon each

mobile station as it gets closer. Therefore, in the NSC, while the system tries to maximize

the aggregate capacity, it does demand the mobile stations to transmit at capacities which are

outside the range determined by γ and η. Also, no mobile station is ever served at the minimum

guaranteed capacity. This should be looked at in comparison with Figure 5.22–(a) which shows
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that the CSC very frequently serves mobile stations at the lowest allowed capacity.

Comparing Figures 5.24–(a) and 5.24–(b) we find out that the helpful results of the NSC

cut the aggregate capacity to almost a half. On the other hand, comparing Figures 5.24–(c)

and 5.24–(e) with Figures 5.24–(d) and 5.24–(f) shows that the NSC is substantially more fair

(almost one hundred times better in ratio unfairness). Given this experiment and the other

results presented in here we conclude that the NSC leads to a more practical solution to the

QoS problem compared to the NSC.

5.3 New Enhanced Single Cell (N+SC)

This section presents experimental results gathered through solving the N+SC. Here, although

the limit for C̃i is defined as 1
Mµ

in (3.39), we choose to analyze the value of 1
µ
, for reasons

described below. The value of MC̃i, which is one if all the mobile stations are transmitting

at the same share of the total received power, represents the deviation of the power received

from the i–th mobile station compared to the equilibrium. Hence, for example, setting µ = 1
1.2

means that no mobile station is allowed to exceed its capacity more than 20% above the value

in equilibrium.

Table 5.2 compares the CSC, the NCS, and the N+SC for a sample problem. This table

shows that, compared to the CSC, the aggregate capacity given by the NSC had decreased fir

about 37%. Consequently, the result of the N+SC shows another 39% drop from the CSC.

Equivalently, the N+SC causes a less than 4% decrease in the aggregate capacity, compared to

the NSC. In fact, we know that by imposing more constraints on the CSC we are reducing the

aggregate capacity. This is performed for the sake of adding good properties, such as fairness

and realistic range of capacity, to the solution. For example, in these three examples the highest

capacity offered to one mobile station is 137, 21 and 13 times the lowest one, for the CSC, the

NSC, and the N+SC, respectively. This show that the NSC and the N+SC are 7 and 10 times

more fair compared to the CSC. Also, the N+SC is two times more fair compared to the NSC.

Similar observations are made regarding the ratio unfairness values.
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Figure 5.24: Aggregate capacity and unfairness of the solutions over time. (a), (c), and (e), The CSC.
(b), (d), and (f), The NSC. (a) and (b) Aggregate capacity. (c) and (d), Subtractive
unfairness. (e) and (f), Ratio unfairness.
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These acceptable outcomes are gained with less than 4% loss in the aggregate capacity.

Comparing the elapsed times, we see that the NSC elapses about ten times more than the CSC,

something expected according to the difference in the order of the computational costs of the

CSC and the NSC, namely O(M2) and O(M3). However, the N+SC only elapses 20% more than

the NSC. It is worth to mention that even for the most expensive algorithm, namely the N+SC,

the platform is able to run the code for about 140 times in a second, making the algorithm

appropriate for a dynamic deployment.

One of the most important aspects of the N+SC is its ability to control the dependency of

the system on single mobile stations. While the dependency of the CSC on the first mobile

station is about 90%, the NSC reduces the dependency to less than 23%, less than half. In fact,

as expected, the dependency of the N+SC on any mobile station is less than or equal to 15%,

which equals 1
Mµ

. In Table 5.2, the values of the capacity shares, C̃i, and the power shares, p̃i,

are shown alongside. Note that, the value of p̃i is idential to that of the x̃i. However, in notation

it also depends on gi,

p̃i = x̃i =
xi

∑M
j=1 xj

=
pigi

∑M
j=1 pjgj

. (5.12)

The approximation used in Section 3.2.1, Equation (3.43), in fact claims,

C̃i ≃ p̃i. (5.13)

Hence, while the equations control p̃i, we are in fact implicitly controlling C̃i. Looking at the

case of the N+SC in Table 5.2, it is observed that C̃i and p̃i are very close to each other. Also,

we see that C̃i is in fact slightly exceeding the 15% bound, numerically less than 1%. Note

that the relationship between C̃i and p̃i does not hold for large values of p̃i, as expected. For

example, in the case of the CSC with p̃1 = 89.3% we have C̃i = 93.8%, more than 5% deviation.

However, in the case of the N+SC such monopolies of power do not exist and hence the use of

the approximation is valid. In the coming parts of this section we will analyze the effects of µ

in more details.
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Figure 5.25: System behavior for different values of µ corresponding to the N+SC. (a) Aggregate ca-
pacity. (b) Subtractive unfairness. (c) Ratio unfairness. (d) The algorithm which gives
the result.

Using the same sequence of path gains as the one shown in Table 5.2 we investigate the

behavior of the system as µ increases from 1
3 to 1. Figure 5.25–(a) shows that as µ decreases, the

aggregate capacity of the system increases. This is what we did expect prior to the experiment,

because µ limits the capacities from reaching larger values. As Figure 5.25–(b) and c show, and

as expected, when µ approaches one the subtractive and the ratio unfairness measures approach

zero and one, respectively. Furthermore, decreasing µ forces the capacity shares to become more

even, resulting in a more fair system. This is also visible in Figures 5.25–(b) and c.

Figure 5.25–d shows the algorithm which has given the solution for any value of µ. Looking

at the flowchart given in Figure 3.3 this curve can be better understood. Here, the condition

Mµω controls whether the solution will be sought for using the combination of the NSC+c and

the N′SC+c or the N′SC. Having (Mω)−1 = 0.5326 we will expect to have the early case for

µ ≤ 0.5326. This is exactly what is observed in Figure 5.25–d.

To show the effects of different constraints, we refer to the curves shown in Figure 5.26. In

these figures, dashed lines represent the constraints while colored lines indicate the behavior of

a mobile station. This figure can be used in finding the values of parameters and their effects

on the final result through finding the instance at which each constraint becomes active.
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Figure 5.26: Treatment of the constraints by different mobile stations in the solution produced by
the N+SC for different values of µ and a sample sequence ~g. In each case the dashed
line represents the constraint while colored lines indicate the status different mobile sta-

tions. (a) 0 ≤ pi ≤ pmax. (b) ϕ ≤ pigi
∑M

j=1
pjgj + I
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pigi
∑M
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≤ 1
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. (e)

Ci
∑M

j=1
Cj

≤ 1

Mµ
.

Comparing Figure 5.26–(b) with Figure 5.26–(a) shows that the approximation used here,

that p̃i ≃ C̃i, is in fact valid. Note that the values of capacity shares sometimes slightly exceed

the constraint. However, comparison shows that the power share curves do follow the capacity

share curves acceptably well.

Another method to research into the behavior of the system and the effects of the new

constraint is to analyze the curves for the capacity shares for different values of µ. Figure 5.27

shows that as expected from the theory as µ tends to one the capacities shares become evenly

distributed.

The experimental results discussed here show that adding the new maximum bound on the

capacity share of the single mobile stations makes the dependency of the base station on them
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Figure 5.27: Capacity share of the mobile stations for different values of µ corresponding to the N+SC.

more controllable. This contribution to the problem results in a slight drop in the aggregate

capacity. Furthermore, it is observed, both theoretically and experimentally, that the computa-

tional cost of solving the QoS problem equipped with the new constraint is about twice as much

as that of the NSC. Hence, we conclude that adding the new constraint to the problem causes

an affordable increase in the computational cost while it provides more control over the results.

5.4 Application of Approximations

This section presents experimental results gathered through solving the CSCa, the NSCa, and

the N+SCa. Here, we use the superscript a for all variables which are calculated using the

approximation (in this section, we use γ = −40dB).

Table 5.3 investigates the properness of the applied approximation for a system solved in the

three frameworks of the CSCa, the NSCa, and the N+SCa. Note that, as expected, the error in

Cai is always less than 10% in all cases. The least amount of error is observed in the CSC for

those mobile stations which transmit at the minimum capacity. This is in fact expected, because

from Figure 3.4–(b) we know that smaller values of xi

1+T undergo smaller errors. Also, note that

as again expected from the discussion given for Equation (3.74), the approximation always gives

excessive results for the NSC and the N+SC. The approximation is sometimes conservative in

the case of the CSC, as also expected.

Table 5.3 approves that the proposed approximation results in less than 10% error. While

this step was necessary, the actual purpose behind deriving the approximate C is not addressed

in this expeirment. The success of this experiment however enables us to consider launching
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the algorithms, namely the CSCa, the NSCa, and the N+SCa, which use the approximate C

in carrying out the trials. This way, we can achieve considerable enhancement in terms of the

comutational cost. In the next experiment we show the results of a sample run of the new

algorithms.

Table 5.4 shows the results of solving a sample problem with the three algorithms. For

each algorithm, first, the exact results are shown. Then, the crude results of the approximate

algorithm are presented (row A). The, in row A+E the results of finding the exact results using

the approximate solutions are shown. These last ones are the actual outputs of the algorithms

called the CSCa, the NSCa, and the N+SCa. In this table, variables without a superscript denote

the results of the exact algorithms, the ones with the superscript a represent the crude results of

the proposed approximate algorithms, and the ones marked with a⋆ holds the results of precise

calculation using the approximate results (the final results of the proposed algorithms). The

values in parentheses show the relative error and Italic and bold text show the final results of

the exact and approximate algorithms, respectively.

As stated at the end of Section 3.3.2 as the proposed algorithms find precise values of the

boundaries, ~pa is always identical to ~p. However, There exists a chance that the approximation

may deviate the optimization process from finding the real maximum, due to the induced errors.

In this experiment such an event was not observed.

In an effort to examine the probability of the approximation misleading the optimization

process from finding the optimal point, the three algorithms were executed for ten thousand

different positions of different number of mobile stations (M ∈ [1, 25]). Doing this experiment,

once incident was in which the approximation disturbed the optimization process. With M = 3

and g1 = 0.39 × 10−13, g2 = 0.23 × 10−13, and g3 = 0.05 × 10−13 the approximation in fact

made an error in spotting the optimum point in the CSCa. This error induced a 3% deviation

in the final result. Based on this experiment we can roughly state that there is a less than 0.1%

chance for a less than 5% error when the approximation is used. However, note that the error

has occured when no maximum bound has been set for Ci. Here, we extensively analyze this

case.
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Figure 5.28: Normalized utility function.

Table 5.5 analyzes this error. The bold number in the C row shows the choice made by the

CSC. Similarly, the bold number in Ca row shows the selection made by the CSCa. The problem

here is that the approximation has changed 1.296 into 1.413, causing about 8% error. Then,

mistakenly, the CSCa has rejected the value of 1.227 in delusion of having found a better value.

Going to the root of this error we see that an error of magnitude 9% has occured in the calculation

of C1. The reason for this error is the high x̂1 of about 0.44. Looking at Figure 3.5–(b) we see

that x̂1 is on the worst range in respect to the error induced by the approximation. One way

to refrain from these approximation errors is to have smaller ~̂x, which means having more fair

systems. In fact, in the case of the NSCa and the N+SCa we do have x̂ ∈ [ϕ, ω] = [0.03, 0.19],

the shaded area in Figure 3.5. This suggests an explanation for why the only case of erratic

behavior happens in the CSCa and not in the NSCa or the N+SCa.

5.5 Incorporation of Utility Functions

This section presents experimental results gathered through solving the NSCf+ and the NSCf−.

Here, we use γ = −45dB. Setting M = 10, the two problems of the NSCf+ and the NSCf−

elapse less than 6ms and 10ms, respectively. Thus, the current implementation could be used

for solving the problem over a hundred times in a second, when a dynamic scheme is used.
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Figure 5.29: System parameters as M increases from one to a hundred for the NSCf−. (a) Aggregate
capacity. (b)Unfairness.

As mentioned at the end of Section 3.4.1, the set of potential solutions to the NSCf+ is

exactly identical to that of the NSC. Thus, we omit the detailed review the results of the

NSCf+. In fact, no further analysis of the NSCf+ will be given here, because the importance

of this problem is solely theoretical. As pointed out in 5.2, the NSC does slightly inherit the

unhelpful tendency of the CSC to serve all but one mobile station at the minimum possible

capacity. Thus, the migration from the NSC to the NSCf+, in which the utility function is pro

larger capacities, will have no benefit.

Looking at concave utility functions, and according to the discussion given in the above, we

expect the NSCf− to generate more acceptable results. Because, as seen in Figure 5.28, the

utility function reduces the relative importance of larger capacities. In the following parts of

this section, we analyze the results of the NSCf− in detail.

Figure 5.29–(a) shows the aggregate capacity as the number of the mobile stations increases

form one to a hundred. As expected in practice, as M increases, so does the aggregate capacity.

We emphasize that in the CSC increasing M decreases the aggregate capacity. For example,

in similar situations, increasing M from one to a hundred drops the aggregate capacity to less

than a third (see Section 5.1). Furthermore, the NSC had the positive property that increasing

M , in most cases, did not decrease the aggregate capacity 5.1. In this context, the importance

of the outcome of the NSCf− is notable.

It is also informative to investigate the capacities of the individual mobile stations as M

increases from one to a hundred. As seen in Figure 5.30–(a), as M increases, the mean capacity
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Figure 5.30: Parameters of the solution to the NSCf− as M increases from one to a hundred. The
dashed lines represent the constraints. In addition, the solid line shows the mean value
and the shaded area indicates the range of variation . (a) Capacity. (b) Transmission
power.
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Figure 5.31: Aggregate received power divided by Pmax for the solution to the NSCf− as M increases
from one to a hundred.

converges to the minimum guaranteed one. Also, looking at the shaded region, which shows

the range of the elements of ~C, when there are thirty or more mobile stations in the cell, all

the mobile station transmit at approximately the same capacity. This means that the power

received from any mobile station at the base station will be approximately identical. Note that

as Figure 5.30–(b) shows, the transmission powers of the mobile stations undergo a similar

transformation. Also, looking at Figure 5.31, it is inferred that that after a certain value of M ,

the aggregate transmission power equals the maximum allowed value. However, it is worth to

mention that this is not always the case, as assumed in some works.

To give a comparison between the NSCf− and the NSC, Figure 5.29–(b) shows the values of

unfairness for different values of M . It is worth to mention that while in the NSCf− unfairness is

always less than four and tends to one as M increases, in the CSC, the unfairness starts from a
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few hundreds and converges to values around fifty. In this respect, the NSC shows more practical

figures of about twenty, but it does not ever touch values around unity, i.e. total fairness. The

dashed line in Figure 5.29–(b) shows the maximum unfairness calculated using (3.166). Note

that the estimation is conservative, partly because there is never a pair of mobile stations being

served at minimum and maximum simultaneously, as also seen in Figure 5.30–(a).

We argue that the fairness of the solution to the NSCf− is essentially the result of the

structure of ~x, as given in (3.151). Note that, compared to the cases of the CSC, the NSC, and

the N+SC, in which the mobile stations tended to produce a disperse pattern of transmission

powers, the approach to maximizing the aggregate capacity in the NSCf− is through pushing

the transmission powers close to each other.

To analyze the behavior of the NSCf− in a dynamic setting, an experiment was carried out

to investigate the situation in which M mobile stations move around in a cell. The details of

this experiment are as discussed in Section 5.2 and Figure 5.20–(a) and 5.20–(b), except for the

fact that here T = 200s is used (the pattern of movements is shown in Figure 5.32). Note that,

while the system is sampled every 100ms, the NSCf− takes less than 10ms. Thus, processor

utilization is less than 10%. Figure 5.33 shows the transmission powers and the capacities of

the mobile stations during the simulation.

Figure 5.34 shows how different parameters of the system change over time. We emphasize

that as seen in Figure 5.34–(c), the aggregate transmission power is about half the given max-

imum bound. Also, according to Figure 5.34–(b), the unfairness of the system is far below the

maximum bound. Figure 5.35 shows how the capacity shares of different mobile stations change

during the simulation time.

5.6 Multiple–Class Systems (MSC)

In order to evaluate the performance of the M1SC and the M2SC, in comparison to each other

as well as to the exact method, namely the NSC, first, a cell containing 15 mobile stations, as

shown in Figure 5.36–(a), is considered (Here, we use system parameters as defined in Section 1.1,

except for Pmax = −113dBm).
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Figure 5.32: Pattern of movement of the mobile stations used in dynamic simulation of the NSCf−.
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Figure 5.33: Transmission powers and capacities of different mobile stations over time in the dynamic

simulation of the NSCf−. (a) Transmission powers. (b) Capacities.
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Figure 5.34: Parameters of the solution to the NSCf− during the simulation. (a) Aggregate capacity.
(b) Unfairness. (c) Aggregate transmission power divided by Pmax.
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Figure 5.35: Capacity shares of the mobile stations during the dynamic simulation of the NSCf−.
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Figure 5.36: Sample MSC problems defined in 15–mobile station cells. (a) ~α = ~1. (b) The elements of
~α have accepted values other than one. These values are visualized using different shades
of gray.

In order to be able to apply the NSC and the proposed algorithms on the same problem, we

set αi = 1, γmini = γ, Cmaxi = η, and pmaxi = pmax, for all the mobile stations. Doing so, we are

using the fact the NSC solves a special cases of the problems the M1SC and the M2SC are able

to work on.

It takes 8.6ms for the NSC to produce a solution to the given problem. Using the first–order

approximation, the M1SC solves the same problem in 26.6ms and the M2SC, which is based on

a second–order approximation, takes 23.4ms. Therefore, using the second–order approximation

results in more than 10% decline in the computational complexity of the solver. Similar obser-

vation is made for problems with different sizes and locaitons of mobile stations. It is worth

to mention that the application of the approximations almost triples the computational com-

plexity. This is mainly due to the fact that the exact algorithms go through a list of candidate

points (see Section 3.1), whereas the approximate algorithms use numerical search at their core.

Nevertheless, the approximations enable us to solve the problem in a multiple–class framework,

a scenario which is out of the scope of the exact algorithms.

Comparison of the aggregate capacity values generated by the three problems, we observe

values of C = 0.735, C = 0.734, and C = 0.735, are produced by the NSC, the M1SC, and
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Figure 5.37: Pattern of movement of the mobile stations used in the dynamic analysis of the M2SC.

the M2SC, respectively (values are relative). The more accurate result of the M2SC is notable.

Numerically, the M1SC has caused 0.16% error in the aggregate capacity whereas the M2SC is

accurate up to four decimal places.

Comparing the M1SC with the exact algorithm, the mean deviation in values of pi is 11.50%,

in which case the minimum deviation is 0.08% and the maximum one is 52.08%. Similar figures

are observed for values of Ci (mean of 11.70%, minimum of 0.085% and maximum of 53.00%).

Analyzing the solution generated by the M2SC, however, the deviation in the elements of ~p and

~C is zero per cent up to four decimal places.

In the next experiment, the performance of the two algorithms, the M1SC and the M2SC, in

a truly multiple–class system are compared. In order to do so, a sample problem is generated, as

shown in Figure 5.36–(b). Here, darkness of each mobile station demonstrates its corresponding

value of αi (the darker a mobile stations is, the higher the corresponding value of αi is). Using

the M1SC, it takes about 29.7ms to solve this problem, whereas the M2SC demands 28.1ms to

find the solution to the same problem (about 5% less). Furthermore, there is 1.09% difference

between the aggregate capacity values calculated by the two algorithms.

Based on the results stated in the above, another experiment is carried out in order to analyze

the behavior of the M2SC in a simulation which spans a given period of time. In this experiment,
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Figure 5.38: Transmission powers and the capacities of different mobile stations over the time in the
dynamic M2SC experiment. (a) Transmission powers. (b) Capacities.
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Figure 5.39: Aggregate capacity during the M2SC experiment.
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Figure 5.40: Capacity shares of the mobile stations during the M2SC experiment. Each shade of gray
represents one mobile station.

the movements of M = 5 mobile stations in a cell are simulated and the corresponding problems

are solved. Here, the movements are modeled using a discrete random walk with the speed

at each moment chosen based on a uniform random variable between zero and 5km/h ([124]).

Here, we assume that no mobile station leaves the cell or enters it. In this setting, the system

is analyzed in the time period of T = 200s, during which the resulting problem is solved every

dt = 100ms. Figure 5.37 shows the random walk of the mobile stations during the experiment.

The solutions produced for all the corresponding problems are aggregated in Figure 5.38. Here,

each row represents one mobile station. The graphs on the left present the transmission powers

of the mobile stations during this time period while the graphs to the right show the regarding

capacities. Figure 5.39 shows the aggregate capacity of the system during the experiment and,

finally, Figure 5.40 presents the capacity shares of the mobile stations during this experiment.

5.7 Generalized Multiple–Class Systems (MSCανLi)

This section holds the experimental results generated through using the proposed MSCανLi

algorithm. Here, we use the system parameters as discussed previously, except for Pmax =

−113dBm and µ = 0.5. Here, we have used L = 100 and α = 1 as well.

As the first experiment, here, we go through the process of solving a sample MSCανLi using

the proposed method, as shown in Table 5.6. While the first two rows in this Table denote
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the path gains in the sample problem, the transformation section in this table represents the

material discussed in Section 3.6.3. It is worth to mention that all the values of ρi calculated

in this problem, through using the exact formulation given in (3.208), are close to the 0.9225

approximation produced by (3.209). These values are used to generate the imaginary MSC⋆

problem, the solution to which is carried in Table 5.6 as well. Note that, here, the values of

χiρiĈi are mentioned, because based on (3.199) these values are what approximate the elements

of ~C.

After the imaginary MSC⋆ is solved, the corresponding values of pi are exactly the transmis-

sion powers of the approximate solution to the original MSCανLi . The values of Ci, however, are

recalculated, as shown in Table 5.6, thus leading to the recalculation of the aggregate capacity,

C. As visible in Table 5.6, the values of χiρiĈi approximate the elements of ~C within a less than

5% range of relative error. The aggregate capacity approximated by the imaginary problem is

less than 3% off, as well. In the given framework, the code has taken 78ms to produce the

presented solution.

Based on the results stated in the above, another experiment is carried out in order to

analyze the behavior of the problem in a dynamic setting which spans a given period of time.

In this experiment, the movements of M = 5 mobile stations in a cell are simulated and the

corresponding problems are solved. Here, the movements are modeled using a discrete random

walk with the speed at each moment chosen based on a uniform random variable between zero

and 5km/h [124]. The underlying assumption of this experiment is that no mobile station leaves

the cell or enters it.

In this setting, the system is analyzed in a time span of T = 200s, during which the re-

sulting problem is solved every dt = 100ms. Figure 5.41 shows the random walk of the mobile

stations during the experiment and the solutions produced for all the corresponding problems

are aggregated in Figure 5.42. Here, each row represents one mobile station. The graphs on

the left present the transmission powers of the mobile stations in the given time span while the

graphs to the right show the regarding capacities. Note the different values of pmaxi and Cmaxi

for different mobile stations. Figure 5.43 shows the aggregate capacity of the system during the
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Figure 5.41: Pattern of movement of the mobile stations used in the dynamic analysis of the MSCανLi .

experiment and, finally, Figure 5.44 presents the capacity shares of the mobile stations during

this experiment. Note that Figure 5.44 in fact shows the values of αiC̃i.

5.8 Multiple–Cell Systems (MC)

In this section, we demonstrate two sets of experimental results gathered by solving sample MC

problems using the proposed method. Here, first, the solution to a sample problem is presented

and then analyzed in detail. Then, another system working under the same conditions is analyzed

as the mobile stations move and cross the cell boundaries in the window of a known time period.

The twin experiments are geared towards presenting the performance of the proposed method in

both static and dynamic situations. Note that, running non-optimized code, solving the problem

in a 5–cell problem which contains 50 mobile stations takes up about 1.2 seconds.

Here, we select the values of the parameters as denoted previsouly, except for C, for which

the smaller value of 0.01 is adopted in order to increase the range for the elements of ~p (see

(1.25)). Also, the base stations are initially placed on a rectangular grid of size,

⌈√
K
⌉

×









K
⌈√

K
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, (5.14)
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Figure 5.42: Transmission powers and the capacities of different mobile stations over the time in the

dynamic MSCανLi experiment. (a) Transmission powers. (b) Capacities.
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Figure 5.43: Aggregate capacity during the experiment with the MSCανLi .
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Figure 5.44: Capacity shares of the mobile stations during the experiment with the MSCανLi . Each
shade of gray represents one mobile station.

and then altered along the two axes according to two independent uniform distributions. Sub-

sequently, the mobile stations are placed according to a two–dimensional uniform distribution

on the area designated by the base stations. Each mobile station is assigned to one base station

at any moment and the borders of the cells are calculated.

The parameters used in this study not mentioned in previous sections are γ = −25dB +

20log10L and Pmax = −113dBm [112] plus Cmax = 1.3 and L = 16. The regarding parameters

for the individual cells and mobile stations follow uniform normal distributions with the given

mean.

Figure 5.45 shows a sample 3–cell problem containing 12 mobile stations. The solution

calculated by the proposed method for this problem is presented in Figure 5.46.

In Figure 5.46, the values of pki and Cki corresponding to each mobile station are shown.

The title of the figure shows the regarding values of C and f̃ as well. Note that here f̃ = 1.42,

exhibiting that the highest capacity offered in the system is only 42% more than the lowest in the

same system. This is a direct result of the implementation of the maximum capacity constraint.

The advantagous limiting effects of the maximum capacity constraint on the unfairness of the

solution have been observed for single–cell systems as well (see Section 5.2).

Here, we analyze the solution shown in Figure 5.46 in detail. In this solution, the aggregate

received power in the three cells equals 23%, 29%, and 31% of the corresponding values of Pmaxk .
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Figure 5.45: Sample problem to be solved by the MC.

Furthermore, the tramsnission powers of the mobile stations fall within the range of from 2% to

65% of what is allowed by the corresponding values of pmaxki . In fact p23 is about 1.8% of pmax23

because of the relative closeness of the corresponding mobile station to the regarding base station

and the better reception of its transmitted signal (the high value of g23). On the contrary, MS22

and MS25 are transmitting at 65% and 52% of their allowed maximum transmission powers.

While the condition for MS25 is mainly due to its larger distance to the corresponding base

station, MS22 is experiencing a deep fade.

The regarding values of Cki, on the other hand, demonstrate a maximum overshoot of 9% over

the designated values of Cmaxki . This is due to the error induced by the use of the approximations.

Among these sources of error is that while the loading factor is assumed to be equal to 0.55,

direct calculation in fact produces values of 0.122, 0.000, and 0.177 for the three cells. Note

that, in this experiment, the second cell is on a separate frequency band while the first and the

third cells share the same band. The SIR of no mobile station in this experiment falls below the

designated minimum SIR limit (all the elements of ~g are at least 40% above their corresponding

values of γminki in this experiment).

In the second experiment, a set of 12 mobile stations are placed in a 3–cell system. The

resulting system is then analyzed in a 200s time period, during which the capacity maximization

problem is solved every δt = 200ms. In this experiment the mobile stations move at the speed
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Figure 5.46: The solution produced by the MC for the sample problem shown in Figure 5.45. Refer to
the text for the analysis of this solution.

of 36km/h [83]. Note that as the system is solved at the rate of 5Hz, the values of Yσ are

regenerated at each refresh.

Figure 5.47 shows the produced problem. Here, three mobile stations undergo hand–offs.

Note that as the base station to which each mobile station is communicating may change during

the experiment, the double indexing of the mobile stations, as MSki, is not consistent during the

time period of interest. Therefore, we label the mobile stations as one to twelve. Equivalently,

double–indexing will be used for referring to mobile stations, in which case the indexes denote

the status of the regarding mobile station at the end of the experiment.

Figure 5.48 shows the optimal transmission powers of the mobile stations as produced by the

proposed method. In each graph, the two dashed lines indicate the bounds (enforced through

the maximum and minimum transmission constraints). Note that in spite of the utilized approx-

imations, including the assumption of the existence of a constant loading factor, the proposed

algorithm is well capable of keeping the transmission powers inside the allowed range. As an

example of the regulation of the transmission powers, note the rise in the transmission power

of the third mobile station (MS22) as its distance to the second base station increases. On the

contrary, MS31 travels at almost the same distance to the third base station and thus exhibits

an almost constant transmission power.
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Figure 5.47: Sample system investigated during a 200–second period to be solved by the MC.

Figure 5.49 shows the capacity at which the mobile stations transmit, after they set their

transmission powers as designated by the values shown in Figure 5.48. This figure shows that

the approximations result in the capacities overshooting the allowed maximum capacities. In

fact, in the implementation, a maximum error of 10% is set as the hard cut–off criterion for the

integrity of the proposed method. Therfore, as each approximation is only valid within the ranges

specified previously, these thresholds, as well as the other one on the accuracy of the aggregate

capacity, act as validity checks for the proposed method. Nevertheless, note that the capacities

do not exhibit the monopoly of capacity commonly observed in the classical formulation of the

problem. The capacities do obey the maximum capacities within an acceptable range as well.

Finally, Figures 5.50–(a) and 5.50–(b) present the aggregate capacity of the system and the

regarding values of ratio unfairness during the experiment. Note that as figure 5.50–(b) shows,

the system normally operates within the range of f̃ = 1.2 to f̃ = 1.6. This shows that the

highest capacity offered in the system is normally less than 60% more than the lowest in the

same system.

168



Chapter 5. Experimental Results 5.8. Multiple–Cell Systems (MC)

0 20 40 60 80 100 120 140 160 180
0

50

100

150

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

1st MS − MS
11

 @ t=200s

0 20 40 60 80 100 120 140 160 180
0

100

200

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

2nd MS − MS
21

 @ t=200s

0 20 40 60 80 100 120 140 160 180
0

50

100

150

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

3rd MS − MS
22

 @ t=200s

0 20 40 60 80 100 120 140 160 180
0

100

200

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

4th MS − MS
31

 @ t=200s

0 20 40 60 80 100 120 140 160 180
0

100

200

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

5th MS − MS
32

 @ t=200s

0 20 40 60 80 100 120 140 160 180
0

50

100

150

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

6th MS − MS
23

 @ t=200s

0 20 40 60 80 100 120 140 160 180
0

50

100

150

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

7th MS − MS
33

 @ t=200s

0 20 40 60 80 100 120 140 160 180
0

100

200

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

8th MS − MS
12

 @ t=200s

0 20 40 60 80 100 120 140 160 180
0

100

200

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

9th MS − MS
24

 @ t=200s

0 20 40 60 80 100 120 140 160 180
0

100

200

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

10th MS − MS
13

 @ t=200s

0 20 40 60 80 100 120 140 160 180
0

100

200

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

11th MS − MS
25

 @ t=200s

0 20 40 60 80 100 120 140 160 180
0

100

200

t (s)

T
ra

ns
m

is
si

on
 P

ow
er

12th MS − MS
14

 @ t=200s

Figure 5.48: Optimal transmission powers of the mobile stations as produced by the MC. Refer to the
text for the analysis of this solution.
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Figure 5.49: Capacities of the mobile stations as produced by the MC. Refer to the text for the analysis
of this solution.
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Figure 5.50: System parameters as produced by the MC. (a) Aggregate capacity. (b) Unfairness.
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Table 5.1: Comparison of the CSC with the NSC. The row P denotes the pattern of the solution. Here, the symbols x and X denote that
the corresponding mobile station is transmitting at the minimum and the maximum guaranteed capacities, respectively. Also, b
and l denote that xi is inside the allowed interval or equals li, respectively.

MS# 1 2 3 4 5 6 7 8 9 10

gi (×10−12) 0.52 0.018 0.016 0.0091 0.0082 0.0081 0.0075 0.0059 0.0059 0.0045

P b x x x x x x x x x
pi 46.527 5.211 5.855 10.439 11.626 11.756 12.617 16.053 16.198 20.916

CSC Ci 2.3606 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046

C̃i 98.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%

C = 2.402, f = 2.356, f̃ = 518.2

P X l l l l l l l l b
pi 14.662 16.092 16.189 16.584 28.796 36.313 50.000 13.744 14.535 18.984

NSC Ci 0.3000 0.2111 0.1863 0.1015 0.0908 0.0898 0.0835 0.0652 0.0646 0.0498

C̃i 24.1% 17.0% 15.0% 8.2% 7.3% 7.2% 6.7% 5.2% 5.2% 4.0%

C C = 1.243, f = 0.2502, f̃ = 6.027
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Table 5.2: Comparison of the N+SC with the CSC and the NSC. Refer to the caption of Table 5.1 for the definition of pattern identifiers.

MS# 1 2 3 4 5 6 7 8 9 10

gi (×10−11) 0.2 0.016 0.0099 0.0044 0.002 0.0018 0.0013 0.00089 0.00056 0.00049

P b x x x x x x x x x
pi 11.33 1.86 3.02 6.79 14.63 16.21 22.80 33.39 53.60 60.93
Ci 1.9689 0.0144 0.0144 0.0144 0.0144 0.0144 0.0144 0.0144 0.0144 0.0144

CSC C̃i 93.8% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7%
p̃i 89.3% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2%

C = 2.098, f = 1.955, f̃ = 137.155, t = 0.6ms

P X X X X b x x x x x
pi 2.86 35.22 57.30 128.81 49.01 16.21 22.80 33.39 53.60 60.93
Ci 0.3000 0.3000 0.3000 0.3000 0.0487 0.0144 0.0144 0.0144 0.0144 0.0144

NSC C̃i 22.7% 22.7% 22.7% 22.7% 3.7% 1.1% 1.1% 1.1% 1.1% 1.1%
p̃i 22.5% 22.5% 22.5% 22.5% 4.0% 1.2% 1.2% 1.2% 1.2% 1.2%

C = 1.320, f = 0.286, f̃ = 20.898, t = 5.6ms

P X X X X X l b x x x
pi 1.90 23.46 38.17 85.79 184.78 199.53 130.86 33.39 53.60 60.93
Ci 0.1927 0.1927 0.1927 0.1927 0.1927 0.1875 0.0844 0.0144 0.0144 0.0144

N+SC C̃i 15.1% 15.1% 15.1% 15.1% 15.1% 14.7% 6.6% 1.1% 1.1% 1.1%
p̃i 15.0% 15.0% 15.0% 15.0% 15.0% 14.6% 6.8% 1.2% 1.2% 1.2%

C = 1.279, f = 0.178, f̃ = 13.425, t = 7.2ms
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Table 5.3: Investigating the properness of the approximation for the CSCa, the NSCa, and the N+SCa. The values in parentheses show
relative error. Approximate values are shown in bold.
MS# 1 2 3 4 5 6 7

gi (×10−11) 0.11 0.031 0.0067 0.0018 0.0011 0.00069 0.00052

pi 21.13 0.96 4.45 16.51 25.96 43.20 57.23

CSC

γi 3.43 0.01 0.01 0.01 0.01 0.01 0.01
p̂i 0.77 0.01 0.01 0.01 0.01 0.01 0.01
Ci 2.14 0.01 0.01 0.01 0.01 0.01 0.01
Cai 1.98 (8%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%)

C = 2.23, Ca = 2.07 (7%)

pi 5.12 18.11 84.46 199.53 199.53 199.53 167.38

NSC

γi 0.23 0.23 0.23 0.14 0.08 0.05 0.03
p̂i 0.19 0.19 0.19 0.12 0.08 0.05 0.03
Ci 0.30 0.30 0.30 0.18 0.11 0.07 0.04
Cai 0.32 (7%) 0.32 (7%) 0.32 (7%) 0.19 (5%) 0.12 (3%) 0.07 (2%) 0.04 (1%)

C = 1.31, Ca = 1.39 (6%)

pi 4.52 15.98 74.50 199.53 199.53 199.53 199.53

N+SC

γi 0.21 0.21 0.21 0.15 0.09 0.05 0.04
p̂i 0.18 0.18 0.18 0.13 0.08 0.05 0.04
Ci 0.28 0.28 0.28 0.20 0.12 0.07 0.05
Cai 0.30 (7%) 0.30 (7%) 0.30 (7%) 0.21 (5%) 0.13 (4%) 0.07 (2%) 0.05 (2%)

C = 1.28, Ca = 1.36 (6%)
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Table 5.4: Investigating the properness of the approximation utilized in the CSCa, the NSCa, and the N+SCa.

MS# 1 2 3 4 5 6 7

gi (×10−11) 0.4 0.0051 0.0038 0.0019 0.0014 0.0008 0.00052

pi 5 .77 5 .90 7 .85 16 .02 21 .28 37 .19 57 .24
E Ci 2 .15 0 .01 0 .01 0 .01 0 .01 0 .01 0 .01

C
S
C
a

C 2 .23
pai 5.77 (0%) 5.90 (0%) 7.85 (0%) 16.02 (0%) 21.28 (0%) 37.19 (0%) 57.24 (0%)

A Cai 1.98 (8%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%)
Ca 2.07 (8%)

A+E Ca⋆i 2.15 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%) 0.01 (0%)
Ca⋆ 2.23 (0%)

pi 1 .40 111 .86 148 .95 199 .53 199 .53 166 .60 57 .24
E Ci 0 .30 0 .30 0 .30 0 .19 0 .14 0 .06 0 .01

N
S
C
a

C 1 .31
pai 1.40 (0%) 111.86 (0%) 148.95 (0%) 199.53 (0%) 199.53 (0%) 166.60 (0%) 57.24 (0%)

A Cai 0.32 (7%) 0.32 (7%) 0.32 (7%) 0.20 (5%) 0.15 (4%) 0.07 (2%) 0.01 (0%)
Ca 1.39 (6%)

A+E Ca⋆i 0.30 (0%) 0.30 (0%) 0.30 (0%) 0.19 (0%) 0.14 (0%) 0.06 (0%) 0.01 (0%)
Ca⋆ 1.31 (0%)

pi 1 .33 106 .43 141 .72 199 .53 199 .53 199 .53 164 .49
E Ci 0 .28 0 .28 0 .28 0 .19 0 .14 0 .08 0 .04

N
+
S
C
a C 1 .30

pai 1.33 (0%) 106.43 (0%) 141.72 (0%) 199.53 (0%) 199.53 (0%) 199.53 (0%) 164.49 (0%)
A Cai 0.30 (7%) 0.30 (7%) 0.30 (7%) 0.20 (5%) 0.15 (4%) 0.08 (2%) 0.04 (1%)

Ca 1.30 (0%)

A+E Ca⋆i 0.28 (0%) 0.28 (0%) 0.28 (0%) 0.19 (0%) 0.14 (0%) 0.08 (0%) 0.04 (0%)
Ca⋆ 1.30 (0%)
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Table 5.5: The case in which the approximation misleads the optimization process utilized within the CSCa. Bold cases show the selected
solutions by the two algorithms.
Solution mobile station 1 mobile station 2 mobile station 3 Total

k xk x1 x̂1 C1 Ca1 x2 x̂2 C2 Ca2 x3 x̂3 C3 Ca3 C Ca

1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.043 0.042
1 1.55 1.55 0.60 1.31 1.37 0.03 0.01 0.01 0.01 0.03 0.01 0.01 0.01 1.337 1.402
2 0.03 1.55 0.60 1.31 1.37 0.03 0.01 0.01 0.01 0.03 0.01 0.01 0.01 1.337 1.402
2 0.92 1.55 0.44 0.84 0.92 0.92 0.26 0.44 0.48 0.04 0.01 0.01 0.01 1.296 1.413
3 0.04 1.55 0.44 0.84 0.92 0.92 0.26 0.44 0.48 0.04 0.01 0.01 0.01 1.296 1.413
3 0.20 1.55 0.42 0.79 0.87 0.92 0.25 0.41 0.45 0.20 0.05 0.08 0.08 1.289 1.402
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Table 5.6: Details of the solution to a 10–mobile station problem produced by the MSCανLi . Refer to the text for more details.

MS# 1 2 3 4 5 6 7 8 9 10

gi (×10−15) 2817.589 773.392 53.273 42.138 37.291 17.043 13.934 8.545 5.832 4.764

The Transformation

χi 78.872 64.136 110.728 121.856 98.328 62.782 71.264 126.310 160.278 20.628
ρi 0.924 0.924 0.923 0.923 0.923 0.924 0.924 0.923 0.923 0.927

Solution to the Imaginary MSC⋆

pi 0.007 0.024 0.176 0.264 0.488 0.906 2.090 0.972 0.999 13.955

χiρiĈi 0.152 0.124 0.109 0.142 0.187 0.102 0.218 0.110 0.098 0.144

C = 0.815

Solution to the Original MSCανLi

pi 0.007 0.024 0.176 0.264 0.488 0.906 2.090 0.972 0.999 13.955
Ci 0.156 0.129 0.113 0.146 0.190 0.106 0.218 0.114 0.102 0.148

C = 0.837

Relative Error

Ci 2.516% 3.428% 3.968% 2.878% 1.367% 4.185% 0.377% 3.944% 4.359% 2.668%

C 2.634%
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Chapter 6

Conclusions

This chapter contains a summary of the work done in this thesis on the issue of the maximization

of the capacity of the reverse link in CDMA systems. This research is based on the mathematical

models developed in Chapters 2, 3, and 4. The experimental analysis of the developed methods

is presented in Chapter 5.

The focal point of this research is the optimization of the aggregate capacity of the reverse link

in a CDMA system. The formulations and the models used in this thesis capitalize on previously

published results which indicate that the dimension of the search space of the problem can be

efficiently decreased. One of the contributions of this research is that it eliminates the need for

numerical search in most cases and yields closed–form solutions in many instances. Also, this

thesis proposes solvers for problems not solvable by the previous approaches.

In the first stage, a new methodology is developed, based on which a closed-form solver

algorithm for an existing problem is proposed. This problem is addressed as the classical problem

in the text (CSC in short). Performance of the proposed solver for different sets of parameters

is investigated and extensive computational cost analysis is given. As a result, it is shown that

the proposed method is superior, both in terms of the computational complexity as well as

the accuracy of the solution. It is found out, however, that in compliance with the available

reports by other researchers, the solution to the CSC can potentially be vastly unfair towards

the majority of the mobile stations, for the benefit of one “elite” mobile station.
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In the next step, and in order to find a solution for the issue of the unfairness of the solution, a

maximum capacity constraint is added to the problem. The resulting problem, which is referred

to as the NSC in text, is then solved by using a methodology similar to the one developed for

the CSC. Also, it is shown that the inclusion of the new constraint in the problem increases the

computational cost of the solver from O(M2) to O(M3). Here, M is the number of the mobile

stations. Subsequently, based on extensive experimental results, the performance of the NSC is

analyzed and is compared with that of the CSC. This analysis contains cases of static systems,

i.e. solving systems at a snapshot, and dynamic ones, i.e. solving a system iteratively as mobile

stations move around in a cell. It is observed that the CSC does indeed separate the mobile

stations into all but one which are served at the minimum allowed capacity and one elite, the

closest mobile station to the base station. That particular mobile station is commonly served at

the most possible capacity feasible in the search space. On the contrary, the NSC is observed to

distribute the resources between the mobile stations evenly and also to correspondingly increase

reliance on the mobile stations as they become closer to the base station. Based on all the

collected evidence, it is suggested in this thesis that the incorporation of the maximum capacity

constraint into the problem leads to a more practical solution with an affordable increase in

the computational complexity. It is noted, however, that the favorable effects of the maximum

capacity constraint on the fairness of the system are indirect influences. Therefore, it is suggested

that through more explicit control of the fairness of the system better results could be achieved.

Following this line of research, in the next step, a maximum bound for the capacity share

of each mobile station is added to the NSC. This new constraint directly limits the share of

resources of the system used by each mobile station, therefore inhibiting monopolies of capacity,

as commonly observed in the results of the CSC. It is shown that the methodology developed for

the CSC and used for the NSC is also applicable to the new problem, which is addressed as the

N+SC for convenience. Through using an approximation, the effect of adding the new constraint

to the problem on the performance of the solver is limited to doubling its computational cost,

as opposed to increasing its order of complexity, as observed in the transition between the CSC

and the NSC.
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The solver for the N+SC developed in this thesis capitalizes on an approximation of the

aggregate capacity. As the previously suggested algorithms, namely the CSC and the NSC,

calculate the aggregate capacity for numerous candidate points, it is suggested that through

extending the use of this approximation, reduction in the complexity of the methods already

developed in this thesis can be achieved. Before implementing these approximations, the error

induced by their use is analyzed and mathematical guarantees for the appropriateness of their

application within the framework of the problem are given. Furthermore, it is shown that there

is a decrease of one in orders of M in the computational costs of the available algorithms after

the approximation is integrated into them. Using examples and numerous safety checks it is

observed that beyond a negligible probability, the solver is guaranteed to not generate false

results induced by the error of the approximation. To calculate this probability, after running

the exact algorithms alongside the ones which use the approximations, for an extensive number

of randomly generated problems, the possibility of 5% error in the aggregate capacity being

induced by the approximation is estimated to be less than 0.1%. Extensive investigation shows

that this error occurs in the case of the classical formulation of the problem, in which the

system is capable of becoming very unfair. In fact, the approximation is shown to be vulnerable

to monopoly of power. Hence, it is concluded that, in more controlled environments provided

by the NSC and the N+SC, the approximation is capable of locating the exact solution while

reducing the computational cost by a factor of more than 1
5M .

In the steps summarized so far, it is assumed that the system operates based on the identity

utility function, meaning the system benefits two times if the capacity offered to one mobile

station is doubled. In practice, however, there always exists a utility function which maps

capacity to revenue or “interest of the operator”. Therefore, in the next step, the objective

function is rewritten in order to calculate the sum of the utilities of the capacities. Then, it

is shown that if the utility function is convex then the developed algorithms work with minor

modifications. However, as it is shown next, in the case of a concave utility function, given that

it meets a set of conditions, in order to achieve the maximum aggregate capacity the mobile

stations have to make their transmission powers as close as possible to each other. This is
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in contrast with the case of identity and convex utility functions in which the mobile stations

work towards making their transmission powers as far from each other as permitted by the

constraints. It is argued that the unfairness of the solution to those problems is primarily a

result of this tendency. As anticipated, empirical results show that concave utility functions

lead to extensively more fair systems than what is achieved by using convex utility functions.

For problems which use concave utility functions, a solver is proposed which may use one–

dimensional numerical search in some cases, depending on the values of the system parameters.

Nevertheless, the computational complexity of the solver is of second degree, in terms of the

number of the mobile stations. It is proved that the developed algorithm locates the global

maximum in all cases as well.

After analyzing the incorporation of general utility functions into the problem, the case of

multiple–class systems is investigated. It is argued that in practical systems service–providers

tend to provide different classes of service, thus setting different bounds in the constraints for

different mobile stations. Analysis of this problem is outside the scope of the methods available

in the literature and the ones developed earlier in this research. Therefore, a previously proposed

approximation is utilized in order to yield first– and second–order approximations of the objective

function. Then, using further approximations, the search space is reduced to a set of linear

inequalities, thus preparing the framework for the use of linear and quadratic programming.

While utilizing a second–degree approximation yields a more accurate outcome, the developed

quadratic objective function overestimates the capacities and therefore has the potential of

producing spurious results. First–order approximation, on the other hand, is conservative but

induces more error. Nevertheless, both algorithms are shown to be well within a 5% error

margin. As a result, the approximate algorithms solve a more general problem at the cost of

being computationally more demanding, partly due to the potential utilization of numerical

optimization in them.

While the different problems discussed above differ in terms of the underlying objective

functions or constraints, they are essentially based on the same model for the SIR. This is

mainly due to the fact that the mathematical framework which is used inside the majority of
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the developed algorithms heavily relies on one particular structure for the SIR model. In the next

stage of this research, and in preparation for generalizing the problem to multiple–cell settings,

the attention is shifted towards spotting the latest additions to the SIR model available in the

literature and then embedding them in the work. Subsequently, and in order to solve the capacity

maximization problem which is based on this inclusive SIR model, a set of approximations is

proposed. These approximations take in a more advanced problem and generate an imaginary

problem which complies with the conventional SIR model used in the classical formulation. In

fact, this process approximates a symbol–level capacity maximization problem by a chip–level

problem and then applies a slightly generalized version of an algorithm developed earlier in this

thesis on it. Details of the approximations and the mathematical guarantees for the range of

error caused by their application are presented in the regarding sections. Subsequently, after the

imaginary problem is solved, the solution is transformed to one which approximates the solution

to the generalized problem. In addition to the mathematical guarantees for the integrity of the

developed algorithm, the performance of the proposed solver is empirically examined through

presenting a set of experimental results as well.

The last stage of this research is the generalization of the work to the more realistic and

the more challenging domain of multiple–cell capacity maximization. In fact, one of the core

assumptions of the single–cell analysis of cellular systems, which inherently includes more than

one cell, is that the inter–cell interference can be approximated as a constant background noise.

Research shows that to be able to exploit the full capacity of the underlying systems this sim-

plistic model has to be revised in favor of the more accurate definition of the capacity which

considers a group of cells simultaneously.

In this thesis, the multiple–cell problem is constructed based on the most inclusive SIR model

available to the author. Development of the problem also takes advantage of the constraints

developed and examined in this research in single–cell settings. Proper utility functions, indi-

vidually defined for the mobile stations, are included in the formulation as well. Therefore, the

methods developed so far are unable to deal with the developed problem and new tools have

to be proposed. In doing so, some of the approximations developed for single–cell problems are
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reformulated and more approximations are developed. The combination of these approximations

has the ability to reduce the complexity of the multiple–cell problem. To do so, these transfor-

mations approximate the objective function and the constraints as quadratic and linear forms,

respectively. As a result, quadratic programming becomes applicable to the developed multiple–

cell problem. Subsequently, after the resulting quadratic programming problem is solved, proper

transformation for acquiring the transmission powers from the set of intermediate decision vari-

ables utilized in the procedure is devised. The proposed algorithm also includes a validity check

in order to guarantee that the utilized approximations do not yield spurious results.

The performance of the proposed multiple–cell method is examined through the use of exper-

imental results. This examination includes the analysis of a static system, in which the bounds

of the error caused by the utilized approximations are discussed as well. Then, a dynamic sce-

nario is investigated, in which a number of mobile stations move inside a multiple–cell system,

thus undergoing hand–offs and other variations. The presented experimental results as well as

the theoretical analysis exhibit the performance of the proposed method in solving the capacity

maximization problem in true multiple–cell systems.

As outlined in this chapter, this thesis performs a step-by-step analysis of the capacity

maximization in the reverse link of a CDMA system. At each step, one aspect of the model

or the developed solver is examined and new improvements are made. These improvements

include the addition of new constraints in order to yield better solutions, the employment of

new approximations in order to reduce the computational complexity of the solver, and the

addition of new features to the underlying model, among others. This research starts off from

a classical definition of the problem in a single–cell system where all the stations are treated

equally, both in terms of the constraints and their significance to the system. The problem is

gradually equipped with more personalization of the system as well as a more realistic modeling.

At the end of this research, the system is investigated in a true multiple–cell multiple–class form.

Elaborate attention is also made to providing theorems and techniques which ease the addition

of new features to the system.
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Theorem

Theorem: For the function f(x) defined as,

f(x) =

∏k
i=1(x+ βi)

(x+ β)k
, (A.1)

where,

0 < β1 < β2 < · · · < βk−1 < β < βk, (A.2)

and,
k
∑

i=1

βi > kβ, (A.3)

the minimum of f(x) for x ∈ [a, b] ⊂ R+ ∪ {0} happens at either a or b.

Proof : We know that limx→±∞ f(x) = 1. We will now prove that ,

lim
x→±∞

f ′(x) = 0−, (A.4)

which results in limx→±∞ f(x) = 1+. We have,

f(x) =

∏k
i=1(x+ βi)

(x+ β)k
=
xk +

∑k
i=1 βix

k−1 + F (x)

(x+ β)k
, (A.5)
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where, F (x) is a polynomial of degree k − 2. Differentiating f(x) in terms of x we have,

f ′(x) =

[(

kxk−1 + (k − 1)
k
∑

i=1

βix
k−2 + F ′

)

(x+ β)k − (A.6)

k(x+ β)k−1

(

xk +
k
∑

i=1

βix
k−1 + F

)]

(x+ β)−2k =

xk−1
(

kβ −
∑k

i=1 βi

)

+G(x)

(x+ β)k+1
,

where G(x) is a polynomial of degree k − 2. Hence, given (A.3), we have proved (A.4).

According to (A.2), we know that −β1 is the largest zero of f(x). We now prove that for

x > −β1, f(x) has no local minimizer. If we prove this, as −β1 is positive, we know that for

any interval on the positive side, the minimum happens at the boundaries, exactly what the

theorem suggests.

We define h(x) = f(x− β1), which yields,

h(x) =

∏k
i=1(x− β1 + βi)

(x− β1 + β)k
=
x
∏k−1
i=1 (x+ θi)

(x+ θ)k
, (A.7)

where,

θi = βi+1 − β1, i = 1, · · · , k − 1, (A.8)

and θ = β − β1. Using (A.2) we have,

0 < θ1 < θ2 < · · · < θk−2 < θ < θk−1. (A.9)

We claim that if we prove that h′(x) has one and only one zero for x ≥ 0, then we have

proved that f(x) accepts its minimum at boundary point. For now, we assume that it is proved

that h′(x) has one and only one zero in x ≥ 0. This claim will be proved later.

We know that h′(0) is positive. If it is not, as h(0) = 0, for a small ε > 0 we have h(ε) < 0.

Note that, h(x), which is the shifted version of f(x), converges to unity at infinity and is a

continuous function in R+ ∪ {0}. Therefore, if h(x) accepts both positive and negative values
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inside R+ ∪ {0}, therefore it will have to have a zero in that interval, an impossible situation

due to the fact that all the zeros of h(x) occur on the negative side. Hence h′(0) > 0. As we

proved that h′(∞) = 0−, so h′(x) accepts both positive and negative values in R+ ∪ {0} and is

continuous in that interval, hence there should be a point inside R+ ∪ {0} for ehich the value

of h′(x) is zero. If we prove that h′(x) has no more zeros in R+ ∪ {0}, so there will be no local

minimizer, leading to the proof we needed.

Now, we prove that there is at most one point at which the value of h′(x) is zero.

Differentiating h(x) given in (A.7) we have,

h′(x) = h(x)

(

−k
x+ θ

+
1

x
+

k−1
∑

i=1

1

x+ θi

)

. (A.10)

As for x > 0, h(x) is positive, h′(x) is zero if and only if the second term in (A.10) is zero,

1

x
+

k−1
∑

i=1

1

x+ θi
=

k

x+ θ
, (A.11)

x+ θ

x
+

k−1
∑

i=1

x+ θ

x+ θi
= k, (A.12)

1 +
θ

x
+

k−2
∑

i=1

(

1 +
θ − θi
x+ θi

)

+ 1− θk−1 − θ
x+ θk−1

= k, (A.13)

θ

x
+
k−2
∑

i=1

θ − θi
x+ θi

=
θk−1 − θ
x+ θk−1

. (A.14)

Note that all the terms in the denominators of (A.14) are positive and that we have,

µ

x
+

k−2
∑

i=1

µi
x+ θi

=
1

x+ θk−1
, (A.15)

µi =
θ − θi
θk−1 − θ

, i = 1, · · · , k − 2, (A.16)

µ =
θ

θk−1 − θ
. (A.17)
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Note that,

µ > µ1 > µ2 > · · · > µk−2 > 0. (A.18)

The equation in (A.15) leads to,

(

µ

x
+

k−2
∑

i=1

µi
x+ θi

)−1

= x+ θk−1. (A.19)

We know that if f(x) = g(x) has two solutions x1 and x2 for two continuous functions f and

g, then there is a solution in [x1, x2] for which f ′(x) = g′(x). The proof comes from working on

the solutions to h(x) = f(x) − g(x) and making sure that h′(x) = f ′(x) − g′(x) should have a

zero inside [x1, x2]. Hence, if we are going to have two points which yield zero values of h′(x),

then thhere should be a solution to,

∂

∂x

(

µ

x
+

k−2
∑

i=1

µi
x+ θi

)−1

=
∂

∂x
(x+ θk−1), (A.20)

or equivalently,
(

µ

x2
+

k−2
∑

i=1

µi
(x+ θi)2

)

=

(

µ

x
+

k−2
∑

i=1

µi
x+ θi

)2

. (A.21)

Here, we use the weighted power mean theorem stated as follows. Assume that the positive

values of ω1, · · · , ωn and ~x = (x1, · · ·xn) are given and define,

M r
ω(~x) =

(

n
∑

i=1

ωix
r
i

) 1

r

. (A.22)

Now, the weighted power mean theorem states that for r < s we have,

M r
ω(~x) ≤M s

ω(~x). (A.23)
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Now, using,

ω1 =
µ

µ+

k−2
∑

j=1

µj

, (A.24)

ωi =
µi−1

µ+
k−2
∑

j=1

µj

, 2 ≤ i ≤ k − 1, (A.25)

for the set of numbers {x, x+ θ1, x+ θ2, · · · , x+ θk−2}, we have,



µ+
k−2
∑

j=1

µj





(

µ

x2
+

k−2
∑

i=1

µi
(x+ θi)2

)

≥
(

µ

x
+
k−2
∑

i=1

µi
x+ θi

)2

. (A.26)

The question here is to determine the value of µ+
∑k−2

j=1 µj .

According to (A.3) with some manipulations we can show that µ+
∑k−2

j=1 µj < 1, which when

substituted into (A.26) gives,

(

µ

x2
+

k−2
∑

i=1

µi
(x+ θi)2

)

>

(

µ

x
+

k−2
∑

i=1

µi
x+ θi

)2

, (A.27)

contradicting (A.21).

Hence, h′(x) has no two zeros in R+ ∪ {0}. This leads to a proof for the claim that the

minimum value of f(x) happens when x takes a value at the boundary �
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Appendix C

MATLAB Code Documentation

This chapter briefly discusses the implementation of the algorithms developed in this thesis in

MATLAB 7.0. For more detailed instructions on how to use any particular function refer to the

documentation enclosed in the regarding m–file. The information contained in the code is also

more up–to–date than this document.

In this appendix, first, in Section C.1, the code developed for solving single–cell problems is

reviewed. The single–cell methods proposed in this thesis are developed using different functions

which carry out different tasks. Many of these functions operate on a large set of input arrays

and matrices. In order to facilitate the use of the functions, however, different sample files

are included in the developed code. These files act as usage examples for different functions.

This appendix follows with the implementation of the multiple–cell algorithms developed in this

thesis in Section C.2. This part of the code has been developed within a class–based framework,

where different methods and handlers hide the unnecessary details from a non–interested user.

C.1 Single–Cell Methods

The implementation of the single–cell methods proposed in this thesis is carried out in a

function–based framework. These implementations include the utility functions (discussed in

Section C.1.1), the solvers (presented in Section C.1.2), and the interfaces (referred to in Sec-

tion C.1.3). From a usage point of view, the interfaces help the potential user of the code bypass

the details and run the code using a set of input parameters.
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C.1.1 Utility Functions

QoSStatus

The file QoSStatus is not a function and does not accept any arguments. In fact, this code

defines the structure of the status variables used in many other functions. In doing so, QoSStatus

contains the indexes used by the solvers in reporting the status of the solution to a particular

problem.

A status vector holds information such as the name of the algorithm which has produced

the solution as well the values of k, and j if applicable.

QoSConst

A call to QoSConst will define constants which are used for designating which algorithm is to

solve a particular problem.

PathGain

The function PathGain generates a set of path gains, thus producing the representation of one

cell. This function can be called in a few different ways, the most basic one of which is as,

• [g,X,Y,Z]=pathgain(M): A set of M mobile stations will be generated, the x–y coordi-

nates of which will be stored at X and Y . The distances from the mobile stations to the

base station will be stored in Z and g will hold the path gains.

In many cases, the cell is analyzed during a time period, thus raising the need for simulating the

movements of the mobile stations. For these purposes, the function PathGain may be called as,

• [g,X,Y,Z,I]=pathgain(x,y): Here, x and y hold the updated position of the mobile

stations, most probably generated by a call to PathGain beforehand. The mobile stations,

however, have to be reordered and the new values of g and Z have to be calculated.

The function PathGain can also be called in a few other different formats, in order to change

model parameters and alike. For details refer to the instructions included in the header of the

function.
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QOSCalc

Function QOSCalc calculates some of the parameters of a solution. It is generally called inside

the solvers in order to refresh the values of the parameters after a solution is produced.

QoSCheck and QoSCheckM

The function QoSCheck examines a solution to determine if it complies with all the required

conditions. It can produce an overall result or a detailed error message. QoSCheckM is the

multiple–class counterpart of QoSCheck.

QoSCheckConst

The function QoSCheckConst generates the constants used in QoSCheck and QoSCheckM for

reporting the source of an error.

QoSVisualizeCell

The visualization of a cell is carried out through QoSVisualizeCell. This function can input

different sets of parameters, enabling it, for example, to visualize cells in which different mobile

stations have different significances.

chirho

The function chirho either calculates ρ(χ) or ρ̃(χ) for a scalar value of χ or an array of values

of χ. For more information refer to Section 3.6.3.

C.1.2 Solver Functions

The solver functions constitute two categories. The first are the user callable functions, presented

in the first part of Table C.1. In addition to these, there are internal functions which attempts

to directly using them may result in spurious solutions. These functions are used inside other

functions and are mentioned in the second half of table C.1.
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Table C.1: Single–cell solver functions and the corresponding problems they solve. For details refer to
the references.

Function Problem(s) Reference(s)

User Callable Functions

QoSCSC CSC Chapter 2
QoSNSC NSC, NSCf+ Sections 3.1, 3.4
QoSNplusSC N+SC Section 3.2
QoSNSCa NSCa Section 3.3
QoSNplusSCa N+SCa Section 3.3
QoSCSCa CSCa Section 3.3
QoSNfmSC NSCf− Section 3.4
QoSMSC M1SC, M2SC, MSC⋆ Sections 3.5, 3.6.2
QoSMSCanL MSCανLi Section 3.6

Internal Functions

QoSNprimeSC N′SC Section 3.2
QoSNprimeSCa N′SCa Section 3.3
internal UaSCf NSCf− Section 3.4

C.1.3 Facilitating Interface

To facilitate the use of the functions listed in Table C.1, function QoS provides a unique inter-

face, through which one can give in all the system parameters and descriptors. Then, through

designating a type variable, the proper solver will be utilized. A sample usage of this function

is given in the file QoSTest.

C.2 Multiple–Cell Methods

The code developed for solving multiple–cell problems takes advantage of MATLAB’s support

for class–based implementations. As a result, the corresponding code becomes encapsulated

inside a class with a set of methods and there is no bulky parameter–passing involved in the

usages.

The algorithm MC (see Section 4) is essentially implemented through the class MCP (stands

for MC problem). This class will be surveyed in Section C.2.1. Then, as we also need to simulate

multiple–cell systems in given time periods, the class MCPs is developed as well (discussed in

Section C.2.2). The MCPs keeps of track of the system parameters of a MCP and provides the

needed presentations and visualizations.
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C.2.1 The Static Class MCP

The MCP class is initialized using the constructor MCP and has the following methods imple-

mented in it.

get and set

The standard get and set, although minimally implemented.

load and save

Saving and loading a MCP class to and from a mat file are performed using the methods save

and load, respectively.

randomize

A random MCP is generated through the use of the method randomize. This method fills all

the parameters with random values within the respective ranges. These parameters can be later

customized through the use of the method set.

prepare

After a problem is generated, it has to undergo a preprocessing stage in order to become ready

for the method solve. To do so, a call to the method prepare will compute the assignment

of the stations to the base stations as well as a few other preliminary stages necessary before

producing a solution.

solve

The heart of the MCP class is the method solve. This method is the implementation of the

algorithm MC.

211



Chapter C. MATLAB Code Documentation C.2. Multiple–Cell Methods

check

After a call to solve, the method check will go through all the parameters and check the

integrity of the solution, both in terms of the structure of the variables as well as the compliance

to the constraints.

display and draw

The twin methods display and draw act as the visualizers of a MCP class. The method

display gives an insider access to the class, letting the user cross the private boundary around

the class properties, while draw provides different visualizations, including the ones presented

in Section 5.6.

C.2.2 The Dynamic Class MCPs

The class MCPs contains a single MCP implemented in it, as well as a set of multi–dimensional

matrices for logging the solution to a MC as the system undergoes change during a known time

period. A MCPs class is initialized using the constructor MCPs and the following methods are

applicable to it.

load and save

Saving and loading a MCPs class to and from a mat file are performed using the methods save

and load, respectively.

randomize

The MCPs class is randomized using the method randomize. A call to this method will also

invoke a call to the randomize method for the internal MCP class.

step

The method step simulates the change of the underlying MCP in a time step equal to δt. This

will include a slight change in the position of the mobile stations as well as updating ~g.

212



Chapter C. MATLAB Code Documentation C.2. Multiple–Cell Methods

simulate

The heart of the MCPs class is the simulate method. This method repeatedly utilizes the

method step and then the method solve of the underlying MCP for the given time period and

subsequently collects the produced results.

display and draw

The method display gives access to the private properties of the class and the method draw

produces different visualizations of it, including the ones presented in Section 5.6.
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