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Abstract Code Division Multiple Access (CDMA) has proved to be an efficient
and stable means of communication between a group of users which share the same
physical medium. Therefore, with the rising demands for high–bandwidth multi-
media services on mobile stations, it has become necessary to devise methods for
more rigorous management of capacity in these systems. Whilea major method for
regulating capacity in CDMA systems is through power control, the mathematical
complexity of the regarding model inhibits useful generalizations. In this paper, a
linear and a quadratic approximation for the aggregate capacity of the reverse link
in a CDMA system are proposed. It is shown that the error induced by the approx-
imations is reasonably low and that rewriting the optimization problem based on
these approximations makes the implementation of the system in a multiple–class
scenario feasible. This issue has been outside the scope of the available methods
which work on producing an exact solution to a single–class problem.

Key words: Quality of Service, CDMA, Optimization, Capacity, Multiple Classes
of Service

1 Introduction

In Code Division Multiple Access (CDMA), several independent users access a
common communication medium by modulating their symbols with preassigned
spreading sequences. The success of this strategy depends on the proper handling of
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the multiple access interference (MIA). The MIA could be either suppressed through
the implementation of advanced signal processing methods such as multiuser detec-
tion and receiver beam–forming, or it could be managed through efficient power
control (Hanly and Tse (1999)) and signature selection. In this paper, we look at the
management of capacity in a single–cell system, where certain conditions have to
be met in order to guarantee an efficient and stable communication (see a survey
in Zhang et al (2005)).

The basic approach to the power management problem is to define a set of con-
straints and then to find the solution which is binding for allof them. An example
of this approach is to find the set of transmission powers which provide a given (of-
ten identical) signal to interference ratio (SIR) for all the stations in a cell (Hanly
(1995)). For example, in Ishikawa and Umeda (1997), the researchers work on ca-
pacity design and analysis of the call admission control using a fixed–SIR approach
(also see Viterbi et al (1994); Shin et al (1999)). A comprehensive and generalized
treatment of this topic can be found in Yates (1995). The fixed–SIR approach is car-
ried out through open–loop power control by individual stations as guided by power
messages transmitted by the base station (Smith and Gervelis (1996)).

With the introduction of multimedia services to wireless CDMA communica-
tions, the goal is no more to provide fixed capacity to all of the users (Ulukus and
Greenstein (2000)), but to maximize the aggregate capacitygiven a set of constraints
(Hanly and Tse (1999)). In fact, the addition of other types of services to the con-
ventional voice–only communication channels has urged theneed for more control
over the rates at which different stations transmit (Frodigh et al (2001)). This con-
trol is necessary in order to maximize system performance measures including the
aggregate capacity (Gilhousen et al (1991)). The implementation of capacity maxi-
mization in multimedia–enabled networks is in contrast with voice–only systems in
which the sole purpose of the power control mechanism is to eliminate the near–far
effect through providing every station with a fixed SIR (Gilhousen et al (1991)).
For an early coverage of achieving multiple rates (Ottossonand Svensson (1995))
through maintaining fixed chip–rate and different transmission powers refer to Baier
et al (1994); Chih-Lin and Sabnani (1995).

The maximization of the capacity, in this paper, is attempted at the reverse link
(uplink), because this link is often the limiting link in CDMA communication sys-
tems (Bender et al (2000); Parkvall et al (2001)). For an early coverage of the ca-
pacity of the reverse link, accompanied by results gatheredfrom field tests, refer
to Padovani (1994) (also see Evans and Everitt (1999)). Among different channels
on the reverse link, this paper concentrates on the traffic channels, due to the more
demanding conditions they need to satisfy in establishing stable communications
(Yang (1998b)). The work presented here is different from power control strategies
used in the forward link (Kim et al (2003)), mainly due to to the stringent require-
ments of the reverse link (Verdu (1989)). It is worth to mention that this work an-
alyzes the system at chip–level, as opposed to some others which also include the
different transmission rates of the individual stations (Sung and Wong (2001)).

To reach a practically sound framework, it is important to consider a set of prac-
tical constraints to be satisfied in the system. While the minimal set of constraints
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considered by different researchers always includes a minimum Quality of Service
(QoS) bound (Hosein (2004)), it is observed that this constraint, in the absence
of other ones, can effectively cause very unfair systems (Ohet al (2003); Jafar
and Goldsmith (2003)). This issue could be dealt with by incorporating fairness
constraints into the problem. This, however, would increase the complexity of the
solver. Moreover, adding more constraints into the problemmakes the analysis of
the problem, and development of a solver algorithm, harder.

The existence of different services in modern wireless systems has caused the
need to define different classes of service (Lee et al (2005)). This, for example,
means potentially different guaranteed minimum QoS levelsfor different users.
Moreover, different users may have different significancesto the service provider,
for example because of their premium rates. The fact that theconstraints are met at
different points for different stations makes the application of many of the methods
developed previously impossible, unless changes are made to them to fulfill the new
demand. This is essentially because a majority of the previous algorithm were de-
signed for the case in which all the stations reside in the same class (Hosein (2003);
Oh and Soong (2006)).

In this paper, we look at the problem of maximizing the aggregate capacity of
the reverse link in a CDMA network. Hence, the aggregate capacity is defined as
the weighted summation of the capacities of the stations. Also, we consider the
case in which there are separate minimum SIR constraints fordifferent stations.
The problem analyzed here also includes a maximum aggregatereceived power
constraint and separate limits on the transmit powers of each station. Furthermore,
each station has its own maximum bandwidth constraint. We will show how this
problem can be approximately solved using linear or quadratic programming.

The rest of this paper is organized as follows. Section 2 contains the proposed
method, Section 3 presents some experimental results and, finally, Section 4 con-
cludes the paper.

2 Proposed Method

This section contains the analysis of the reverse–link capacity maximization in a
multiple–class system. Here, we assume that during the timeit takes for the solver
to produce a solution the system is in a steady state. This model is based on the
assumption that the system is analyzed in time slots ofTs, whereTs ≫

1
W (W is

the bandwidth), and that the coherence time of the most rapidly varying channel
is greater thanTs. Therefore, in each time slot, path–loss propagation coefficients
can be assumed to be constant (Oh et al (2003)). It is also worth to mention that
the typical time interval during which the shadowing factorin nearly constant for a
mobile station is a second or more (Torrieri (2004)). Hence,for solvers which elapse
significantly less than a second to produce a solution shadowing can be ignored as
well.
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The rest of this section is organized as follows. First, in Section 2.1, the system
model is presented. Then, a set of substitute variables are defined in Section 2.2,
from which, in Section 2.3, two approximations for the objective function are de-
rived. These approximations are used to generate the canonical representations de-
picted in Section 2.4. Then, after the issue of the addition of other constraints into the
problem is addressed in Section 2.5, Section 2.6 presents the proposed algorithms
as well as a complexity analysis.

2.1 System Model

Assume that there areM mobile stations with reverse link gains ofg1, · · · ,gM, which
satisfyg1 > · · ·> gM. Denote the transmit power of thei–th mobile station aspi and
the maximum transmission power of thei–th station aspmax

i ,

0≤ pi ≤ pmax
i ,∀i. (1)

With a background noise ofI, the SIR for the signal coming from thei–th station,
as perceived by the base station, is calculated as,

γi =
pigi

I +∑M
j=1, j 6=i p jg j

. (2)

Here, we assume that Shannon’s formula can be used to approximately relate SIR
to the bandwidth, thereby writingCi = B log2 (1+ γi). The adoption of the maxi-
mum bound given by Shannon’s theorem is based on previously–developed models
(see Kandukuri and Boyd (2000); Hanly and Tse (1999); Huawei(2005) for ex-
ample). Moreover, we omit the constantB for notational convenience and therefore
analyze relative capacities. Using these notations, in this section, we consider the
problem defined as maximizing,

C =
M

∑
i=1

αiCi,αi > 0, (3)

subject to,























γi ≥ γmin
i ,∀i,

Ci ≤Cmax
i ,∀i,

M

∑
i=1

pigi ≤ Pmax,

0≤ pi ≤ pmax
i ,∀i.

(4)

Here, the constantsγmin
i , Cmax

i , and pmax
i are the minimum SIR, the maximum ca-

pacity, and the maximum transmission power of thei–th station, respectively and
αi is the significance of stationi. In other words, the values of theαis demonstrate
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the “interest” of the system in each particular station. Accordingly, these values can
indicate priority, for example for providing more urgency to calls made by emer-
gency vehicles, or be based on the premium rate each station has signed on to pay
for the service. Through grouping the stations into classesof identical values for
these parameters, this model will be applicable to a multiple–class scenario.

Settingαi = 1, γmin
i = γ, Cmax

i = η , andpmax
i = pmax this problem will reduce to

the single–class problem titled as the NSC in Abadpour et al (2007b). In Abadpour
et al (2007b) an algorithm is proposed which solves the NSC inanM–station cell in
O(M3) flops.

The goal of the rest of this section is to solve the more generalized problem of
maximizing (3) subject to (4), in which different stations not only have different
significances, denoted by different values ofαi, but also have their own individual
constraints. In these circumstances, the mathematical method introduced in Abad-
pour et al (2006) and used for tackling the NSC (Abadpour et al(2007b)) and its
single–class generalizations (Abadpour et al (2007a)) will not work, because the
constraints are now specific to the stations and therefore the methodology used pre-
viously will fail.

2.2 Substitute Variables

Here, we propose a new set of substitute variables and then rewrite the optimization
problem, using approximations, as a linear or a quadratic programming problem.

Define the new set of variables,

ϕi =
γi

1+ γi
=

pigi

∑M
j=1 p jg j + I

,∀i. (5)

Note that,

Ci = − log2 (1−ϕi) . (6)

Derivation shows that,

pigi = I
ϕi

1−∑M
j=1 ϕ j

. (7)

Thus, if∑M
i=1 ϕi < 1, a set of positiveϕis will produce a set of positivepis.

Using (5), the conditions given in (4) can be rewritten as linear constraints for
ϕis as,
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

























ϕmin
i ≤ ϕi ≤ ϕmax

i ,∀i,
M

∑
i=1

ϕi ≤
Xmax

Xmax +1
,

li
M

∑
j=1

ϕ j +ϕi ≤ li,∀i.

(8)

Here,


































ϕmin
i =

γmin
i

γmin
i +1

,

ϕmax
i = 1−2−Cmax

i ,

Xmax =
Pmax

I
,

li =
pmax

i gi

I
.

(9)

Note that the second condition in (8) results in∑M
i=1 ϕi ≤ 1, satisfying the condition

needed for (7) to produce positivepis. Defining theM×1 vectorsϕ, ϕmin andϕmax

as the sequence of all values ofϕi, ϕmin
i andϕmax

i , respectively, we define,

A =





11×M

1M×M +diag

[

1
l1

, · · · ,
1
lM

]



 , (10)

b =

[ Xmax

Xmax +1
1M×1

]

. (11)

Now, (8) can be written as,
{

ϕmin ≤ ϕ ≤ ϕmax,
Aϕ ≤ b.

(12)

While we will use (12) as the set of constraints for the optimization problem, to be
given later in the paper, this set of inequalities can also beused for identifying the
feasible region forϕ. This issue is not discussed in this paper.

2.3 Approximation of the Objective Function

The formulation of the objective function, in its present form, as a function of the
ϕis, includes fractional and logarithmic terms and is hard to work with. Thus. we
devise two methods, a linear and a quadratic one, to approximate C as a first–
degree or a second–degree function of theϕis. With the linear representation of
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the constraints, given in (12), this would make the application of standard linear and
quadratic programming methods to the problem analyzed herepossible.

For smallγi, We have,

Ci = log2 (1+ γi) ≃
1

ln2
γi ≃

1
ln2

ϕi. (13)

The approximation used here can be written as,

ln(1+ x) ≃
x

1+ x
,x ∈ [γ,2η −1], (14)

and yields a linear approximation ofCi in terms ofϕi. A better approximation is
given below,

Ci ≃
1

ln2
γi =

1
ln2

ϕi

1−ϕi
≃

1
ln2

ϕi (1+ϕi) . (15)

This is a second order approximation ofCi in terms ofϕi and uses the following
approximation,

ln(1+ x) ≃
x

1+ x

(

1+
x

1+ x

)

,x ∈ [γ,2η −1]. (16)

The appropriateness of the two approximations demonstrated in (14) and (16)
is investigated in Figure 1. Here, the nominal values ofγ = −30dB andη = 0.3
are used, demonstrated using the shaded area. Based on Figure 1–b, both approx-
imations induce less than 10% error. Note that aspi increases, and thus so doγi

and ϕi, the error induced by either approximation goes up. However, the second
order approximation is always more accurate than the linearapproximation (see
Figure 1–a). It is also important to emphasize that while thelinear approximation is
conservative, i.e. it produces smaller values than the exact formulation, the second
order formulation approximates the capacity by a laregr value. Therefore, the sec-
ond order approximation overestimates the aggregate capacity which it attempts to
maximize.

2.4 Canonical Representation

Defining theM ×1 vectorα, as the sequence of allαis, we use the linear approxi-
mation, given in (13), to rewrite the objective function as,

C ≃
1

ln2

M

∑
i=1

αiϕi = fT ϕ. (17)

Here,
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Fig. 1 Investigating the properness of the approximations given in (14) and (16). The shaded areas
show the working interval. Note that, as shown in (14) and (16),here we approximateln(1+ x) in
terms of x

1+x . Thus, the fact that the quadratic approximation exhibits a line in the(x, f (x)) plane
should not mislead the reader. (a) The exact values compared withthe two different approxima-
tions. (b) Relative error induced by the two approximations.
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f =
1

ln2
α . (18)

Similarly, the quadratic approximation, given in (15), results in,

C ≃
1

ln2

M

∑
i=1

αi
(

ϕi +ϕ2
i

)

=
1
2

ϕT Hϕ + fT ϕ, (19)

where,

H =
2

ln2
diag [α1, · · · ,αM] . (20)

The maximization of either (17) or (19) has to be carried out subject to the con-
straints shown in (8) and using linear or quadratic programming, respectively. We
call these two algorithms the M1SC and the M2SC, respectively. These algorithms
will be presented in detail in Section 2.6.

2.5 Addition of Other Constraints

The approximations proposed here are also helpful when a a new constraint is to be
added to the problem. The reader is referred to the case of adding a new constraint
to the NSC, addressed in Abadpour et al (2007a), which led to the definition of the
N+SC. There, to tackle the unfairness of the solution to the NSC, a capacity–share
constraint was added to the problem, as,

C̃i =
Ci

C
≤

1
µ

1
M

,0 < µ < 1. (21)

Adding this constraint to the NSC almost quadrupled the codecomplexity of the
solver (Abadpour et al (2007a)). Here, we demonstrate the straightforward approach
which yields the addition of the new constraint to the approximate problems.

Using (3) Equation (21) can be written as,

M

∑
j=1

α jϕ j ≥ Mµϕi,∀i. (22)

This translates into,

(Mµ IM×M −α11×M)ϕ ≤ 0M×1. (23)

We argue that the addition of any constraint which can be written as a linear function
of theϕis could be performed similarly.
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2.6 Proposed Algorithms

Using the developed formulation, the two algorithms of the M1SC and the M2SC
can be written as the three steps of,

1. GeneratingA, b, f andH,
2. Solving eitherϕ=linprog(f,A,b,ϕmin,ϕmax), for the case of the M1SC, orϕ=quadprog(H,f,A,b,

ϕmin,ϕmax), for the case of the M2SC, and, finally,
3. CalculatingCis using (6),pis using (7), andC using (3).

Note that, as the matrixH, defined in (20), is positive–definite, the computa-
tional complexity of the M2SC is polynomial (Kozlov et al (1979)). The linear
programming–based approach, namely the M1SC, will take up polynomial time as
well (Gill et al (1982)).

3 Experimental Results

The proposed algorithms are implemented in MATLAB 7.0 and executed on a PIV
3.00GHZ personal computer with 1GB of RAM running Windows xp.

Here, the work is carried out in a circular cell of radiusR = 2.5Km. For the
stationi at the distancedi from the base station, only the path–loss is considered,
and is modeled as given in Rappaport and Milstein (1992),

gi = Cdn
i . (24)

For a comprehensive review of the subject refer to Rappaport(2002). Here,C and
n are constants equal to 7.75×10−3 and−3.66, respectively, whendi is in meters.
Equivalently, withdi in kilometers,C will equal 1.2283×10−13 (see Yang (1998a);
Oh and Wasserman (1999); Goodman and Mandayam (2000)). To produce a se-
quenceg of lengthM, a set of 3M points are placed in the[−R,R]× [−R,R] square,
based on a two dimensional uniform distribution. Then, fromthose in the circle with
radiusR centered at the origin,M points are picked.

The base parameters used in this study areγ = −30dB, I = −113dBm, Pmax =
−113dBm, pmax = 23dBm, andη = 0.3. These values are partly based on the data
given in Goodman and Mandayam (2000); Goodman (1997); Yang (1998a). Note
that, here, the values ofI andPmax comply with the notion of limiting the blocking
probability, as defined in Viterbi and Viterbi (1993). The conversion fromdB to
watts is performed according toxdB ≡ 10

1
20x. Also, xdBm ≡ 10

1
10xmw.

In order to evaluate the performance of the proposed methods, in comparison to
each other as well to the exact method, namely the NSC, first, acell containing 15
stations, as shown in Figure 2–(a), is considered.

In order to be able to apply the NSC and the proposed algorithms on the same
problem, we setαi = 1, γmin

i = γ, Cmax
i = η , andpmax

i = pmax, for all the stations.
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Fig. 2 Sample problems defined in 15–station cells. (a) Allαis are one. (b) None unityαis visual-
ized using different shades of gray.

Doing so, we are using the fact that the NSC solves a special case of the problem
the M1SC and the M2SC are able to work on.

It takes 8.6ms for the NSC to produce a solution to the given problem. Using
the first–order approximation, the M1SC solves the same problem in 26.6ms and
the M2SC, which is based on a second–order approximation, takes 23.4ms to finish.
Therefore, utilization of the second–order approximationresults in more than 10%
decline in the computational complexity of the solver. Similar observation is made
for problems with different sizes and locaitons of stations. It is worth to mention that
the application of the approximations almost triples the computational complexity.
This is mainly due to the fact that the exact algorithms go through a list of candidate
points (Abadpour et al (2007b)), whereas the approximate algorithms use numerical
search at their core. Nevertheless, the approximations enable us to solve the problem
in a multiple–class framework, a scenario which is out of thescope of the exact
algorithm.

Comparison of the aggregate capacity values generated by the three problems,
we observe values ofC = 0.735,C = 0.734, andC = 0.735, produced by the NSC,
the M1SC, and the M2SC, respectively (values are relative). The more accurate re-
sult of the M2SC is notable. Numerically, the M1SC has caused 0.16% error in the
aggregate capacity whereas the M2SC is accurate up to four decimal places.

Comparing the M1SC with the exact algorithm, the mean deviation in the values
of pi is 11.50%. The minimum and the maximum deviation of the same variable is
0.08% and 52.08%, respectively. Similar figures are observed for values of Ci (mean
of 11.70%, minimum of 0.085% and maximum of 53.00%). Analyzing the solution
generated by the M2SC, however, the deviation inpis andCis is zero per cent up to
four decimal places.

In the next experiment, the performance of the two algorithms, the M1SC and
the M2SC, in a truly multiple–class system are compared. In order to do so, a sam-
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ple problem is generated, as shown in Figure 2–(b). Here, darkness of each station
demonstrates its corresponding value ofαi (the darker a stations is, the higher the
corresponding value ofαi is). Using the M1SC, it takes about 29.7ms to solve this
problem, whereas the M2SC demands 28.1ms to find the solution to the same prob-
lem (about 5% less). Furthermore, there is 1.09% difference between the aggregate
capacity values calculated by the two algorithms.

Based on the results stated in the above, another experimentis carried out in or-
der to analyze the behavior of the M2SC in a simulation which spans a given period
of time. In this experiment, the movements ofM = 5 stations in a cell are simulated
and the corresponding problems are solved. Here, the movements are modeled using
a discrete random walk with the speed at each moment chosen based on a uniform
random variable between zero and 5Km/h (Jabbari and Fuhrmann (1997)). Here,
we assume that no station leaves the cell or enters it. In thissetting, the system is
analyzed in a time span ofT = 200s, during which the resulting problem is solved
everydt = 100ms. Figure 3 shows the random walk of the stations during the ex-
periment. The solutions produced for all the correspondingproblems are aggregated
in Figure 4. Here, each row represents one station. The graphs on the left present
the transmission powers of the stations in this time span while the graphs to the
right show the regarding capacities. Figure 5 shows the aggregate capacity of the
system during the experiment and, finally, Figure 6 presentsthe capacity shares of
the stations during this experiment.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
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Fig. 3 Pattern of movement of the stations used in the dynamic analysis of the M2SC.
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Fig. 4 Transmission powers and the capacities of different stations over the time in the dynamic
experiment. (a) Transmission powers. (b) Capacities.
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Fig. 5 Aggregate capacity during the experiment.

4 Conclusions

The problem of maximizing the aggregate capacity of the uplink in a single–cell
CDMA system was analyzed in this paper. As an extension to theavailable meth-
ods, the case of multiple–class systems was analyzed. As opposed to the previous
studies which assume identical constraints for all the stations, it was argued that
in practical systems, customers constitute different classes and therefore should be
treated accordingly. It was shown that, through using approximations, the problem
can be solved using linear or quadratic programming. While utilizing a second–
degree approximation yields a more accurate outcome, it overestimates the capaci-
ties and therefore may result in spurious results, due to thefact that the aim of the
problem is the maximization of the aggregate capacity. First–order approximation,
on the other hand, is conservative but induces more error. Nevertheless, both algo-
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Fig. 6 Capacity shares of the stations during the experiment. Each shade of gray represents one
station.

rithms are well inside a 5%–error margin. The proposed algorithms, however, are
computationally more expensive due to the utilization of numerical optimization in
them. The paper also contains analysis of the problem in a time span, during which
the stations perform a random walk inside a cell.
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