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Chapter 1

Notion of Membership

Historically, the clustering problem was first tackled in communication and information-theory

fields. One of the first solutions to this problem was suggested for scalar quantization and is

known as Lloyd algorithm [1] or Max quantizer [2]. That method was later generalized to vector

quantization [3] and the resulting algorithm is generally known as the Generalized Lloyd Algorithm

(GLA).

The notion of membership is a key point of distinction between different clustering frameworks.

Essentially, membership may be Hard or Fuzzy. Within the context of hard membership, each

data item belongs to one cluster and it is different from all other clusters. The fuzzy membership

regime, however, maintains that each data item in fact belongs to all clusters, with the stipulation

that the degree of membership to different clusters is different [4]. K-means [5] and Hard C-means

(HCM) [6, 7] clustering algorithms, for example, utilize hard membership values. The reader is

referred to [8] and the references therein for a history of K-means clustering and other methods

closely related to it. Iterative Self-Organizing Data Clustering (ISODATA) [9] is a hard clustering

algorithm as well. It is worth mentioning that one of the first references to k-mean clustering was

in the field of Mechanics [10].

With the introduction of Fuzzy Theory [11], many researchers incorporated this more “natu-

ral” notion into clustering algorithms [12, 13, 14]. The premise for employing a fuzzy clustering

algorithm is that fuzzy membership is more applicable in practical settings, where, generally, no

distinct line of separation is present between the clusters [15]. In the words of the authors of [16],

a fuzzy membership regime is more applicable where“a more nuanced description of the objects

affinity to the specific cluster is required”. Additionally, from a practical perspective, it is observed
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that hard clustering techniques are extremely more prone to falling into local minima [6] (also

see [17, 18, 19]). The reader is referred to [20, 21, 22] for the wide array of fuzzy clustering methods

developed in the past few decades. The reader is also referred to [23] for a recent review of the field

of fuzzy clustering.

Initial work on fuzzy clustering was done in the late 60s and the early 70s [24, 25, 26, 27] and it

was then generalized into Fuzzy C-means (FCM) [28, 20]. In FCM, data items, which are denoted

as x1, · · · , xN , belong to R
k and clusters, which are identified as ψ1, · · · , ψC , are represented as

points in R
k. FCM makes the assumption that the number of clusters, C, is known through a

separate process or expert opinion and minimizes the following objective function,

∆ =
C
∑

c=1

N
∑

n=1

fmnc ‖xn − ψc‖
2
. (1.1)

This objective function is heuristically suggested to result in appropriate clustering results and is

constrained by,

C
∑

c=1

fnc = 1, ∀n. (1.2)

Here, fnc ∈ [0, 1] denotes the membership of xn to ψc.

We note that the fact that membership values are binary in hard clustering approaches is not

just because these approaches impose the fnc ∈ {0, 1} constraint [29]. In fact, merely relaxing this

constraint into fnc ∈ [0, 1] does not lead to a fuzzy assignment regime between the data items and

the clusters [30]. Nevertheless, it is possible to achieve fuzzy membership values through utilizing

a regularization term which penalizes crisp or close-to-crisp membership settings [30]. The regular-

ization term used in that work is derived from a maximum entropy approach and it is shown [30]

to yield desirable results which resemble the possibilistic clustering framework [31]. Also, in [32],

the authors utilize prior membership probabilities and a Kullback-Leibler (KL) regularization term

in order to produce fuzzy membership while utilizing m = 1 (also see [33, 34, 35, 36]). In [37] the

authors utilize Deterministic Annealing (DA) in order to produce fuzzy membership values and

to avoid or reduce the possibility of entrapment in local minimums. This is carried out through

modeling fnc as a Gibbs distribution which transforms from fully fuzzy into fully crisp as the tem-

perature is lowered. For a thorough review of DA in the context of clustering and other related

problems refer to [38]. Utilization of regularization, annealing, and similar frameworks carries with

it the need to properly configure the corresponding parameters, the values of which may be problem

class or even problem instance dependent.
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In (1.1), m > 1 is the fuzzifier (also called weighing exponent and fuzziness). The optimal

choice for the value of the fuzzifier is a debated matter [39] and is suggested to be “an open

question” [40]. It has been suggested [41] that 1 < m < 5 is a proper range, whereas m = 2 is

a recommended choice. The use of m = 2 was suggested in the early works [26] on the topic as

well as later works in the late 90s [42], among others [43]. Moreover, physical evidence exists [19]

for the choice of m = 2 and it has been suggested that the best choice for m is probably in the

interval [1.5, 2.5] [44]. Nevertheless, other researchers argue that the choices for the value of m are

mainly empirical and lack a theoretical basis [40]. That work suggests that “a proper m depends

on the data set itself” [40]. Nevertheless, it is known that larger values of m soften the boundary

between the clusters [30]. The reader is referred to [29] for a review of the concept of fuzzifier and

alternatives for it.

Recently, a method for determining the optimal value of m in the context of FCM has been

proposed [45]. That work employs four Cluster Validity Index (CVI) models and utilizes repeated

clustering for m ∈ [1.1, 5] on four synthetic data sets as well as four real data sets adopted from the

UCI Machine Learning Repository [46] (refer to [47] for a review of CVIs and [48] for coverage in

the context of relational clustering). The range form in that work is based on previous research [49]

which provided lower and upper bounds on m. The investigation carried in [45] yields that m = 2.5

andm = 3 are optimal in many cases and thatm = 2 may in fact not be appropriate for an arbitrary

set of data items. This result is in line with other works which demonstrate that larger values of

m provide more robustness against noise and the outliers. Nevertheless, significantly large values

of m are known to push the convergence towards the sample mean, in the context of Euclidean

clustering [40]. Another analysis of FCM and some of its variants in the context of robustness is

carried out in [50], where in recommends m = 4 is recommended. In [51], the authors address the

related problem of fuzzy model construction. They set up the framework using m = 2 and proceed

to find the optimal value of m for different problem instances while maintaining m ∈ [1.1, 5]. They

show that different values of m are optimal within the context of different problem classes.

A suggestion has been made [52] to generalize the concept of fuzzifier and to replace fmnc with

an increasing and differentiable function g(fnc). An alternative to the classical fuzzifier function

which follows their recommendation is g(fnc) = αf2nc+(1−α)fnc, for a known 0 < α < 1 [29] (also

see [53]). Another contribution to the field includes the introduction of the concept of “graded

possibility” [54], which modifies a model parameter similar to the fuzzifier during the operation.

An alternative approach [55, 56, 57] suggests to modify (1.2) in favor of customized
∑

fnc con-
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straints for different values of n. That technique allows for the inclusion of a priori information into

the clustering framework and is addressed as Conditional Fuzzy C-means (CFCM). The same mod-

ification is carried out in Credibilistic Fuzzy C-Means (CFCM) [58, 59], in which the “credibility”

of data items is defined based on the distances between data items and clusters. Therefore, in that

approach, (1.2) is modified in order to deflate the membership of outliers to the set of clusters (also

see [60]). Customization of (1.2) is also carried out in Cluster Size Insensitive FCM (csiFCM) [61]

in order to moderate the impact of data items in larger clusters on an smaller adjacent cluster.

Leski [39] provides a generalized version of this approach in which
∑

βfαnc is constrained.

FCM is the groundbreaking mathematical model and the gateway into a majority of other

algorithms in the literature of fuzzy clustering. In other words, a significant number of subsequent

works in the field in effect modify FCM in order to alter its behavior and to achieve desired

properties. For example, in FCM, a data item which is distant from all clusters, is assigned the

membership level of 1
C

to every cluster [62]. That membership value may in fact be relatively high

for small C values. More importantly, the fact that the level of membership of an outlier to the

clusters is dependent on the number of clusters is unintuitive.

Augmentation of FCM with regularization terms and constraints is not with its inherent hazards.

Many works in the literature employ such techniques and as a by-product become dependent on

additional parameters which need to be set properly and carefully. Often the “proper” setting of

these parameters is critical for the desired function of the corresponding algorithms. For example,

in [62], the authors state that the performance of their proposed method depends on five parameters

which have to be “chosen through experience”. The difficulty with the proper tuning of “resolution-

parameter-based techniques” is reviewed in detail in [63]. The authors of [62] provide a list of some

of the affected approaches.



Chapter 2

Prototype-based Clustering

It is a common assumption that the notion of homogeneity must depend on the distances between

the data items. This assumption is made implicitly when clusters are modeled as prototypical data

items, also called clustroids or cluster centroids, as in FCM, for example. A prominent choice in

these works is the use of the Euclidean distance function [64]. For example, the potential function

approach considers data items as energy sources scattered in a multi-dimensional space and seeks

peak values in the field [65] (also see [66, 37, 67]). We argue, however, that the distance between

the data items may not be either defined or meaningful and that what the clustering algorithm

is to accomplish is the minimization of data item-to-cluster distances. For example, when data

items are to be clustered into certain lower-dimensional subspaces, as it is the case with Fuzzy

C-Varieties (FCV) [68], the Euclidean distance between the data items is irrelevant. We note that,

in fact, fuzzy clustering is sometimes equated and reduced to prototype-based clustering [30] (this

reductive perspective is prevalent as of 2015 [69]).

The reader is also referred to the work on the Parallel Fuzzy C-Means (PFCM) algorithm in [70],

wherein fuzzy clustering is reduced to prototype-based clustering. In fact, a person not familiar

with the field may conclude based on that work that fuzzy clustering is inherently and exclusively

a prototype discovery mechanism. A similar reduction of fuzzy clustering to seeking prototypes

is made in the design of the Dynamic Fuzzy Clustering (DFC) technique introduced in [32]. The

collaborative fuzzy clustering algorithm proposed in [71] follows a similar perspective too. The

reader is referred to [54] for a unified formalism of prototype-based clustering algorithms, what

that paper calls the “CM Family”, including FCM, HCM, Deterministic Annealing (DA) [37], and

Possibilistic c-Means with an entropic cost term (PCM-II) [33].
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Prototype-based clustering does not necessarily require prototypes which are explicitly present.

For example, in kernel-based clustering [72], it is assumed that a non-Euclidean distance can be

defined between any two data items. The clustering algorithm then functions based on an FCM-

style objective function and produces clustroids which are defined in the same feature space as the

data items [73]. These cluster prototypes may not be explicitly represented in the data item space,

but, nevertheless, they share the same mathematical model as the data items [74] (the reader is

referred to a review of Kernel FCM (KFCM) and Multiple-Kernel FCM (MKFCM) in [75] and

several variants of KFCM in [76]). Another example for an intrinsically prototype-based clustering

approach in which the prototypes are not explicitly “visible” is the Fuzzy PCA-guided Robust k-

means (FPR k-means) clustering algorithm [77] in which a centroid-less formulation [78] is adopted

which, nevertheless, defines homogeneity as proximity between the data items. Fuzzy Analysis

(FANNY) [79] is another algorithm in which, although there are no prototypes, but, nevertheless,

homogeneity is based on the mutual distances between the data items.

Relational clustering approaches constitute another class of algorithms which are intrinsically

based on the distances between the data items (for example refer to Relational FCM (RFCM) [80]

and its non-Euclidean extension Nerf C-means [81]). The goal of this class of algorithms is to group

the data items into self-similar bunches. Another algorithm in which the presence of prototypes

may be less evident is Multiple Prototype Fuzzy Clustering Model (FCMP) [82], in which data items

are described as a linear combination of a set of prototypes, which are, nevertheless, members of

the same R
k as the data items are. Fuzzy clustering by Local Approximation of Memberships

(FLAME) [83] and Hierarchical Agglomerative Clustering (HAC) [84, 14.3.12 Hierarchical cluster-

ing] are other clustering algorithms which inherently guide the process of clustering based on the

distances between the data items. The same is applicable to Visual Assessment of cluster Tendency

(VAT) [85], and its variants Automated VAT (aVAT) [86] and Improved VAT (iVAT) [87], which

all function based on the distances between the data items. Additionally, some researchers utilize

ℓr-norms, for r 6= 2 [88, 89, 90, 91], or other distance functions which are defined between a pair of

data items [92].

The use of prototype-based clustering also leads to challenges when complex notions of homo-

geneity are applicable to the problem class in hand. For example, in [62] the authors argue that

multiple prototypes ought to be utilized when geometries other than spherical and ellipsoidal are

to be addressed. They formalize that approach into the two-level Fuzzy Convex Clustering (FCC)

algorithm, which is composed of consecutive FCC Expansion (FFCE) and FCC Merging (FFCM)
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stages. Through that mechanism, they employ convex polytopes, which they consider to represent

“flexible prototypes”. The reader is referred to [21, 93] for examples of fuzzy clustering problems

which involve non-Euclidean geometries.

We argue that a successful departure from the assumption of prototypical clustering is achieved

when clusters and data items have different mathematical models. For example, the Gustafson-

Kessel algorithm [94] models a cluster as a pair of a point and a covariance matrix and utilizes

the Mahalanobis distance between data items and clusters (also see the Gath-Geva algorithm [95],

Fuzzy C-Regression Models (FCRM) [96], and the improvements given in [97]). Fuzzy shell cluster-

ing algorithms [43], which are sometimes addressed as Fuzzy C-Shells (FCS), utilize more generic

geometrical structures. For example, the FCV [68] algorithm can detect lines, planes, and other

hyper-planar forms (also see [98, 99, 100, 101, 102, 103, 104]), the Fuzzy C Ellipsoidal Shells

(FCES) [105] algorithm searches for ellipses, ellipsoids, and hyperellipsoids, and the Fuzzy C

Quadric Shells (FCQS) [43] and its variants seek quadric and hyperquadric clusters (also see Fuzzy

C Plano-Quadric Shells (FCPQS) [103, 104] and [106, 107, 108]).
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Chapter 3

Robustification

Researchers have argued [63] that the function of membership values in FCM and the concept of

weight functions in robust statistics are related. Based on this perspective, it is argued that the

classical FCM in fact provides an indirect means for attempting robustness. Nevertheless, it is

known that FCM and other least square methods are highly sensitive to noise [58]. In the words

of the authors of [33], “It is well known that the LS analysis is severely compromised by a single

outlier in the data set”. The authors of [109] in fact perform a numerical review of this topic in the

context of FCM and PCM and argue that the FCM constraints are “too strong” and that PCM

constraints, on the other hand, are “too weak”. Hence, there has been ongoing research on the

possible modifications of FCM in order to provide a (more) robust clustering algorithm [110, 111].

Refer to [63] for an extensive list of relevant works and an outline of the intrinsic similarities within

a unified view (also see [112, 113]).

The first attempt to robustifying FCM, based on one account [63], is the Ohashi Algorithm [112,

114]. That work adds a noise cluster to FCM and writes the robustified objective function as,

∆ = α

C
∑

c=1

N
∑

n=1

fmnc ‖xn − ψc‖
2 + (1− α)

N
∑

n=1

(

1−
C
∑

c=1

fnc

)m

. (3.1)

The transformation from (1.1) to (3.1) was suggested independently by in [113, 115] where the Noise

Clustering (NC) algorithm was proposed (also see Robust Fuzzy Clustering Algorithm (RFCA) [115]).

The core idea in NC is that there exists one additional imaginary prototype which is at a fixed

distance from all of the data items and represents noise. That approach is similar to modeling ap-

proaches which perform consecutive identification and deletion of one cluster at a time [116, 117].

Those methods, however, are expensive to carry out and require reliable cluster validity measures.
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The core idea behind NC has been extended into the Possibilistic C-means (PCM) algorithm

by rewriting the objective function as [118],

∆ =

C
∑

c=1

N
∑

n=1

tmnc ‖xn − ψc‖
2 +

C
∑

c=1

ηc

N
∑

n=1

(1− tnc)
m. (3.2)

Here, tnc denotes the degree of representativeness or typicality of xn to ψc (also addressed as a

possibilistic degree in contrast to the probabilistic model utilized in FCM). As expected from the

modification in the way tnc is defined, compared to that of fnc, PCM removes the sum of one

constraint, shown in (1.2), and in effect extends the idea of one noise cluster in NC into C noise

clusters. In other words, PCM could be considered as the parallel execution of C independent NC

algorithms that each seek a cluster. Therefore, the value of C is somewhat arbitrary in PCM [63].

For this reason, PCM has been called a mode-seeking algorithm where C is the upper bound on

the number of modes.

We argue that the interlocking mechanism present in FCM, i.e. (1.2), is valuable in that, not

only clusters seek homogenous sets, but that they are also forced into more optimal “positions”

through forces applied by competing clusters. In other words, borrowing the language used in [64],

in FCM, clusters “seize” data items and it is disadvantageous for multiple clusters to claim high

membership to the same data item. There is no phenomenon, however, in NC and PCM which

corresponds to this internal factor. Additionally, it is likely that PCM clusters coincide and/or leave

out portions of the data unclustered [119]. In fact, it is argued that the fact that at least some of

the clusters generated through PCM are non-coincidental is because PCM gets trapped into local

minimum [120] (also see [29, 30]). PCM is also known to be more sensitive to initialization and the

exact values of the configuration parameters than other algorithms in its class [119, 64].

PCM dislodges the cluster model used in FCM and converts a set of C clusters which are inter-

connected through the
∑C

c=1
fnc = 1 constraint into C independent objective functions. In other

words, PCM completely deliberately releases the clusters from the pressure of their peers and, as

stated by the authors of an investigation on PCM [33], while FCM is “primarily a partitioning al-

gorithm”, PCM is “primarily a mode seeking algorithm”. Nevertheless, this transformation inflicts

upon PCM the issue that multiple clusters may be discovered simultaneously [119] and as stated by

the developers of PCM “[PCM’s] weakness is that it requires a good initialization” [33]. Addition-

ally, while FCM treats m as a non-significant parameter, PCM is dependent on the proper choice of

the fuzzifier, and it is stated to malfunction in the case ofm = 2 and requirem = 1.5, because PCM

requires a “faster decay” than FCM [33]. As stated by the authors of [33], “the value of m needs
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to be chosen so that the decay rate in the membership function is meaningful”. Additionally, PCM

needs “proper initialization” [33] to the extent that it is recommended that an instance of FCM is

executed in order to “provide a reasonable initialization” [33] for PCM. While this additional cost

is a concern as the size of the problem grows, the suitability of FCM as an initialization for PCM

is also stated to only be applicable when “data is not severely contaminated” [33].

It is important, however, to point out the major contribution of PCM over FCM. In fact, “[t]he

power of the PCM does not lie in creating partitions but rather in finding meaningful clusters as

defined by dense regions” [33]. From this perspective, the fact that PCM may generate “coincident

clusters” [33] is stated to be a “a blessing in disguise“ [33], because it allows PCM to function

as a set of C truly independent cluster discovery mechanisms. Hence, “even if the true value

of C is unknown, the outcome of the algorithm will be useful“ [33]. Therefore, “the algorithm

can potentially find C good clusters from a data set that may have more than C clusters” [33].

Additionally, “if the data set has less than C clusters, then the algorithm can still potentially find C

good clusters, out of which some of them may be identical” [33]. These are indeed very important

properties and position PCM in a superior state compared to FCM. This important aspect of

PCM, however, is overshadowed by its extreme dependence on initialization and selection of the

parameters. Additionally, not only PCM provides no mitigation procedure, but also it lacks any

mechanism for recognizing that it has generated duplicate clusters. Therefore, we agree with the

authors of [33] that “the PCM approach has the potential for solving one of the major problems

with the FCM, namely, the need to know the number of clusters”, but we argue that for this

potential to be realized PCM needs to evolve further. One of the attempts in materializing the

potential present in PCM is the progressive cluster discovery mechanism employed in [121]. In that

work, data items which are classified into a discovered cluster are then removed from the set.

It has been argued that both concepts of possibilistic degrees and membership values have

positive contributions to the purpose of clustering [122, 123]. As a result, FCM and PCM have

been combined through rewriting the optimization function of Fuzzy Possibilistic C-Means (FPCM)

as minimizing [122],

∆ =
C
∑

c=1

N
∑

n=1

(fmnc + tηnc) ‖xn − ψc‖
2 , (3.3)

subject to (1.2) and
∑N

n=1
tnc = 1, ∀c. That approach was later shown to suffer from different

scales for fnc and tnc values, especially when N ≫ C, and, therefore, additional linear coefficients

and a PCM-style term were introduced to the objective function [124]. It has been argued that
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the resulting objective function employs four correlated parameters and that the optimal choice for

them for a particular problem instance may not be trivial [64]. Additionally, in the new combined

form, fnc cannot necessarily be interpreted as a membership value [64]. The reader is also referred

to Possibilistic-Fuzzy C-Means (PFCM) [109] for a related model which “hybridizes” PCM and

FCM in order to “avoid various problems of PCM, FCM, and FPCM”. Additionally, see [125, 126]

for other variants and [31] for an added entropy-style regularization term.

The introduction of the PCM model is motivated by several factors, amongst which is to be

able to relax, or somewhat circumvent, the sum-of-one constraint for the membership values. As

such, through “giving up the requirement for strict partitioning” [54], the expectation is that the

resulting algorithm will be able to reject outliers and to deal with data items which do not belong

to any of the clusters more efficiently. As discussed here, however, the utilization of the PCM-style

models has given rise to the emergence of other difficulties. In this context, the model presented

in [127] is worth particular attention. That work states that the relationship between the data

items and the clusters must be assessed at two levels, i.e. whether or not a data item is an outlier

and, if not, which clusters it belongs to. In other words, the model developed in [127] replaces the

singleton membership identifiers fnc with the pair of pn and fnc. Here, pn models the probability

that xn is an inlier and fnc models the probability that it belongs to ψc, given that it is an inlier.

An extension of this model in [128] demonstrates that the pn variables can emerge from the fnc

values when the classical parallel clustering framework is converted to a serially-structured pipeline.

Weight modeling is an alternative robustification technique and is exemplified in the algorithm

developed by Keller [129], in which the objective function is rewritten as,

∆ =
C
∑

c=1

N
∑

n=1

fmncuc
1

ωq
n

‖xn − ψc‖
2 , (3.4)

subject to
∑N

n=1
ωn = ω. Here, the values of ωn are updated during the process as well.

Additionally, researchers included a robust loss function in the objective function of FCM and

developed Robust C-Prototypes (RCP) [42],

∆ =

C
∑

c=1

N
∑

n=1

fmncuc (‖xn − ψc‖) . (3.5)

Here, uc (·) is the robust loss function for cluster c. They further extended RCP and developed an

unsupervised version of RCP, nicknamed URCP [42]. Alternative HCM (AHCM) and Alternative

FCM (AFCM) algorithms utilize this idea using uc(x) = 1− e−βx2

[74] (also see [130]). It is worth

to mention that in the absence of a robust loss function, the transition in membership values in
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the boundary between adjacent clusters is governed by the fuzzifier [29]. Hence, one is encouraged

to reduce m in order to reduce the unwanted ambiguity in the interface between different clusters.

Nevertheless, smaller values of m are known to correspond to hard formulation which are more

sensitive to local minimums. The reader is also referred to [131, Sections 10 and 11] for the use of

the Gauss-Newton method with a robust loss function.

In [111], the authors provide a taxonomy of the mitigation strategies proposed in the literature

in order to address the presence of outliers in the context of fuzzy clustering of non-fuzzy data.

Possibilistic approaches are the first robustification technique that they discuss. Those approaches

utilize the Possibilistic Theory [132] and deflate the membership of outliers to the clusters [118, 31,

120, 60, 133]. The noise approach, on the other hand, employs one of the several formalizations

of the notion of the noise cluster [113, 63, 134, 135]. Moreover, metric approaches utilize data

item to cluster distance functions with robust properties [91, 74]. A related technique involves the

use of robust loss functions and reformulates the cost function corresponding to a fuzzy clustering

problem into M, R, or L estimators [136]. In essence, in the so-called order statistics approach,

an appropriate loss function transforms the distance function into a robust entity (the reader is

referred to [42, 63] for examples of this technique). Nevertheless, some of the techniques mentioned

above result in a situation which the authors of [111] address as the influence weighting approach.

In that approach, a weighting system, which may organically emerge within the model or may be

imposed on it exogenously, associates lower weights to outlier data items as they take part in the

recalculation of the optimal clusters (for example refer to [129, 137]). The trimmed approach and

the semifuzzy approach, on the other hand, utilize heuristic techniques which are believed to result

in robustification. As such, in the former approach, an outlier detection and elimination process

“cleanses” the data before or during clustering [138, 139, 140, 141, 142]. In the latter approach,

however, a data item which attempts to become a member of too many clusters or for which the

membership to many clusters is below a certain threshold is given special treatment [143]. Utilizing

this terminology, the method developed in this paper employs means which can be categorized under

a combination of possibilistic approaches, the noise approach, order statistics, and the influence

weighting approach.
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Chapter 4

Number of Clusters

The classical FCM and PCM, and many of their variants, are based on the assumption that the

number of clusters is known (an extensive review of this topic is given in [20, Chapter 4]). While

PCM-style formulations may appear to relax this requirement, the corresponding modification is

carried out at the cost of yielding an ill-posed optimization problem [64]. In fact, repeating the

clustering for different numbers of clusters [95, 144] and Progressive Clustering are two of the

alternative approaches to address the challenge of not requiring a priori knowledge about the

number of clusters present in a particular data.

Among the many variants of Progressive Clustering are methods which start with a significantly

large number of clusters and freeze “good” clusters [144, 145, 103, 104], approaches which combine

compatible clusters [146, 144, 145, 103, 104, 42], and the technique of searching for one “good”

cluster at a time until no more is found [116]. These approaches utilize one or more CVIs in

order to assess the appropriateness of the clusters produced after each execution of the algorithm.

For a review of CVIs in the context of relational clustering refer to [48] (also see [47]). Use of

regularization terms in order to push the clustering results towards the “appropriate” number of

clusters is another approach taken in the literature [147]. These regularization terms, however,

generally involve additional parameters which are to be set carefully, and potentially per problem

instance [122].

The conclusion of an important 1997 paper on the topic is that the solution to the general

problem of robust clustering when the number of clusters is unknown is “elusive” and that the

techniques available in the literature each have their limitations [63]. In this paper, we acknowledge

that the problem of determining the appropriate number of clusters is hard to solve and even hard

15
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to formalize. Additionally, we argue that this challenge is equally applicable to many clustering

problems independent of the particular clustering models utilized in the algorithms. Therefore, we

designate this challenge as being outside the scope of this contribution and assume that either the

appropriate number of clusters is known or that an exogenous means of cluster pruning is available

which can be utilized within the context of the algorithm developed in this paper (refer to [95] for

an early review of this approach). The reader is referred to the category of method collectively

known as Visual Assessment of cluster Tendency (VAT) [85]. More recent variants of VAT include

Automated VAT (aVAT) [86] and Improved VAT (iVAT) [87].



Chapter 5

Weber Problem

In 1929, Weber published a pioneering work on finding an optimal solution to a problem which

is now commonly known by his name [148]. In its modern form [149], the Weber Problem can be

written as minimizing,

∆(ψ) =
N
∑

n=1

ωnφ(xn, ψ). (5.1)

Here, ωn > 0 are the weights and φ (·) is a known function. When φ (·) denotes the Euclidean dis-

tance, one of the most popular solution strategies to theWeber Problem is proposed byWeiszfeld [150]

(refer to [151] for an accelerated version).

A generic approach to solving (5.1) is to confirm that ∆(ψ) is convex and then to pursue with

the derivative of ∆ (·) relative to ψ. This process generally results in the presence of φ′(xn, ψ) in

the update equation of an iterative process, for which guaranteeing convergence is often cumber-

some [152]. For example, the analysis given in [153] does not contain a proof of convergence and

suggests to monitor the value of ∆(ψ) during the iterations and to restrict the rate of change in

ψ. While this operation is costly, its generalization to problems in which ψ is governed by a com-

plex mathematical model, as opposed to ψ ∈ R
k, is non-trivial. Other works in the field consider

ℓp norms and discuss local and global convergence [154, 155] as well as recommend acceleration

techniques [156, 157] (also see Iteratively Reweighted Least Squares (IRLS) [158]). The reader is

referred to [159, Chapter 4.5] and the references therein for further review of the topic and different

options for numerical calculation.

Other approaches to solving the Weber Problem in more general settings, utilize regularization

and other similar numerical techniques in order to suppress the amount of change in ψ in consecutive

iterations. As such, the progression of the algorithm is maintained at a balance between a gradient
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descent path with smaller sizes, which is slow but guaranteed to converge, and a Newton’s method,

which is faster but may diverge. The reader is referred to Tikhonov-Arsenin [160], Levenberg [161],

and Marquardt [162] algorithms for mathematical details (also see [163]). A very recent review of

the different incarnations of the Weber Problem and an outline of Weiszfeld’s work can be found

in [164].

From a theoretical perspective, the Weber Problem is a special case of the problem addressed in

this paper when C = 1. Nevertheless, the two functions ∆X(ψ) and ∆Ψ(x), which are defined and

used in this work, have structural similarities to generalized Weber Problems. Therefore, some of

the tools developed for solving generalized Weber Problems are applicable to the method developed

in this paper.



Chapter 6

Weighted Clustering

Many fuzzy and possibilistic clustering algorithms make the assumption that the data items are

equally important. Weighted fuzzy clustering, however, works on input data items which have

an associated positive weight [116]. This notion can be considered as a marginal case of clus-

tering fuzzy data [165, 166]. Other examples for this setting include clustering of a weighted

set, clustering of sampled data, clustering in the presence of multiple classes of data items with

different priorities [167], and a measure used in order to speed up the execution through data

reduction [168, 169, 170, 171].

A formalization of this situation, wherein weights are manipulated in order to move the clus-

tering results towards data items which are harder to include regularly is given in [172]. Similarly,

researchers have utilized density motivated weights in order to reduce the impact of outliers [173]

(refer to [174] for different variants of this framework). Semi Supervised FCM (ssFCM) [175] uses

weight factors based on an Euclidean norm in order to balance the sizes of different hyper-spherical

shaped clusters based on user intervention. The reader is referred to [176, 177, 178, 179, 180, 181,

182, 183, 184, 185, 186, 187, 188] and the references therein for other fuzzy clustering approaches

in the context of fuzzy input data items.

Note that the extension of FCM on weighted sets has been developed under different names,

including Density-Weighted FCM (WFCM) [170], Fuzzy Weighted C-means (FWCM) [189], and

New Weighted FCM (NW-FCM) [190]. A more thorough review of fuzzy clustering in the context

of fuzzy data can be found in [111, 191] and the references therein.
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Chapter 7

Spatial context

FCM effectively ignores spatial context [192]. In other words, in FCM, PCM, and many other

variants of fuzzy clustering algorithms, datums are treated as separate realizations, where there

is no a priori relationship between xn and xn+1. Nevertheless, in the physical world, datums

are always correlated. Hence, the notion of spatial context suggests that a datum is defined in

its context and must be classified while the context is taken into consideration. In words of the

authors of [192], “usually, one pixel is too small to represent part of an image”.

It is important to emphasize that the notion of spatial context and the premise of NC are

somewhat contradictory. While NC attempts to classify noisy datums into a separate cluster and

to subsequently discard them, the thinking behind spatial context is that a noisy datum may be

classified based on its context [192]. This is an important requirement in approaches such as image

segmentation, in which a pixel identified as noise is in effect a discontinuity in the output.

While it is theoretically possible to include datum coordinates, if applicable, as additional

features and then to carry out clustering [193, 144], that approach is not theoretically justifiable,

because coordinate information and datum features are often inherently different and are defined

in different scales. From a practical perspective, too, defining a notion of homogeneity which

encompasses both datum homogeneity as well as spatial contiguity for datums is not a trivial task.

Another primitive approach to including the spatial context into the clustering process is to

perform data pre-processing [194, 195, 168, 76, 192, 169]. Potential loss of details, however, is

among the caveats of this technique. A marginally more appropriate approach is to perform post-

processing on the membership maps [196, 197, 198, 199, 195] or to execute clustering at different

scales and to fuse the results afterwards [200, 201]. The reader is referred to [202, 203, 204] for other
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variations of these approaches. It has been argued [205] that the incorporation of spatial context

as a pre- or post-processing stage is easy to implement but lacks proper theoretical justification.

Spatial context can also be incorporated into the optimization process as additional informa-

tion. In fact, Gibbs random fields have been used in order to model spatial context within the

framework of K-means clustering [206, 207, 208, 209]. Also see [210] for an iterative process which

utilizes sliding windows which shrink over time. Another, more recent, example for this approach

is Geometrically Guided FCM (GG-FCM) [211, 212] in which the semi-supervised framework de-

veloped in [213] is modified in order to use neighborhood information as training for image pixels

(also see Spatial FCM (sFCM) [214] and Bilateral FCM (bFCM) [215]).

GG-FCM and Geometrically Guided Conditional FCM (GGC-FCM) utilize a reject class and

eliminate datums which are found to be spurious [212]. That approach is not desirable in ap-

plications which require every datum to be classified into a cluster. That deficiency, however, is

addressed in Spatially Guided FCM (SG-FCM) [216], in which a geometrical shape descriptor is

incorporated into the objective function. Nevertheless, in those works, spatial context is either

utilized as a static input [213] or as information which is dynamically recalculated through the

process [216]. The latter case, however, commonly depends on engineered measures of compliance

to spatial contiguity and often additionally requires the proper setting of one or more regularization

coefficients. For example, the approaches outlined in [213, 216] depend on the proper setting of the

value of the parameter α.

Another example for the utilization of spatial context as a priori information is the Improved

FCM (IFCM) [171], in which a histogram-based FCM deployment produces cluster prototypes and

membership values and then the resulting crisp membership information is utilized in order to

produce the pnc quantities for each datum and each cluster. Here, pnc denotes the ratio of the

neighbors of xn which belong to ψc. The second stage of that algorithm then finds fnc and ψc

which minimize the following modified objective function,

∆ =
C
∑

c=1

N
∑

n=1

pmncf
m
nc ‖xn − ψc‖

2
. (7.1)

That framework effectively utilizes spatial context as static information which is injected into the

objective function at some point during the process.

The aforementioned works belong to the general category of approaches which utilize engineered

regularization terms. Many of the works in that category propose a superficially constructed term

which penalizes excessive spatial variation. Additionally, as stated before, the regularization terms
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are generally multiplied by a constant, the proper setting of the value of which is an important

prerequisite for the appropriateness of the outcomes of the algorithm (as an example containing

both issues refer to [217]). An early examples of that approach is the Contig-k-means [218, 219]

algorithm which updates the crisp k-means clustering objective function in order to incorporate

spatial contiguity into it. That approach, however, requires the proper adjustment of the value of

the parameter λ. In another example, in [220], a term is devised which penalizes correlation between

membership values of adjacent datums to different clusters. Another example is presented in [221],

in which the authors inject a regularization term into the objective function of a Kernel FCM

(KFCM) algorithm [222] and generate the Spatially constrained Kernel FCM (SKFCM) algorithm.

That approach of modeling the spatial context has precedence in the literature [63, 223, 76, 224,

225, 169] and is inspired by Neighborhood EM (NEM) [226].

In NEM, the proper value for the parameter α is to be set by the user and is suggested to

be dependent on the signal to noise ratio (SNR) of the input image. Dependence on additional

parameters is a concern in other works as well. For example, in [192] the authors develop the

Improved FCM (IFCM) algorithm wherein “neighborhood attraction” is modeled as a combination

of “feature attraction” and “distance attraction”. That model is a reminiscent of notions from

bilateral filtering literature [227]. Nevertheless, the term which utilizes spatial context in that work

depends on two parameters, the values of which are to be set by on an Artificial Neural Network

(ANN) (also see [214]). Additionally, the attraction models utilized in [192] depend on datum-

to-datum distances, which, as previously noted, are in fact irrelevant to a generic homogeneity

model.

A more generalized approach to spatial context is utilized in Bias-Corrected FCM (BCFCM) [194],

in which the following regularization term is employed,

α

‖Sn‖

C
∑

c=1

N
∑

n=1

[

fmnc

∑

n′∈Sn

∥

∥

∥
xn′ − ψc

∥

∥

∥

2

]

. (7.2)

In that framework, α inversely depends on the SNR of the input image and its proper value is

to be set through a separate process. An accelerated and robustified variant of that framework

is given in [76] and its combination with [228] is proposed in [229]. A variant of that approach

is utilized in Enhanced FCM (EnFCM) [168], in which acceleration is achieved through utilizing

the image histogram. That work, as well as the Fast Generalized FCM (FGFCM) [169], require

the proper setting of two parameters which govern the tradeoff between the original image and a

filtered version of it. The effects of those parameters are described as “crucial” and “experience” or
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“trial-and-error” are stated to be required in order for them to be properly selected [230]. Similar

conditions are applicable to [76, 168], among other works.

In [231] the authors develop the Adaptive FCM (AFCM) algorithm through incorporating a

multiplier field into the objective function as follows (also see [228, 232, 233]),

∆ =
C
∑

c=1

N
∑

n=1

f2nc

∥

∥

∥
xn − snψc

∥

∥

∥

2

+ (7.3)

λ1

N
∑

n=1

[

(∆xsn)
2 + (∆ysn)

2
]

+

λ2

N
∑

n=1

[

(∆xxsn)
2 + 2 (∆xysn)

2 + (∆yysn)
2
]

.

Here, the ∆ terms indicate forward difference operators and λis are regularization coefficients. In

effect, the two regularization terms in (7.3) constrain the sn field into a smooth surface. In addition

to the difficulties of optimizing the AFCM objective function in terms of sn, as outlined in [231],

it is important to emphasize that (7.3) is essentially an Euclidean prototype-based framework and

that the generalized formulation for generic datum and cluster models is not trivial.

Fuzzy Local Information C-Means (FLICM) [230] is among the state-of-the-art in the field of

image segmentation. The formulation of FLICM does not depend on any particular parameters and

it uses fuzzy local similarity measures which incorporate both gray level as well as spatial closeness.

We argue, however, that the notion of datum-to-datum comparison which is used in FLICM, is only

applicable to a certain category of problem classes which includes gray scale image segmentation but

excludes color image segmentation. Moreover, the primary concern with FLICM is that it engineers

a new concept, i.e. the Fuzzy Factor G. In fact, that work is a prime example of the introduction of a

new concept based on intuition, as it is outlined in the list of “characteristics” given in [230, Section

III.A]. That concept is then heuristically composed as a mathematical formula [230, (17)]. That

paper then follows with verbal justification of the appropriateness of the engineered factor [230,

Section III.B]. While there are important epistemological questions regarding the construction of

FLICM, that framework is further extended in subsequent frameworks such as RFLICM [234] and

KWFLICM [235]. An extension of FLICM is given in FCM with Edge and Local Information

(FELICM) [236], in which results at image edges are improved through separate treatment of

boundary pixels.



Chapter 8

The VAT Literature

The thinking process behind some of the earliest attempts at the estimation of C, is one of “find

many clusters, select only a few” [237]. In this line of thinking, the clustering algorithm is allowed

to generate many cluster candidates and significant resources have been allocated to the study of

cluster validity assessment techniques. The reader is referred to a comprehensive review of this

after-the-fact approach in [238] (also see Dunn’s index [26], the DB index [239], and the PBM

index [240]). Nevertheless, a majority of those approaches make the assumption that the validity of

a cluster, or an entire clustering solution, can be measured using a scalar value. However, thorough

the examination of 23 scalar measures of cluster validity, researchers have shown that “none of

them are exceptionally reliable across a wide range of datasets” [241] (also see [242] for a Monte

Carlo evaluation of 30 different validity indexes). From a theoretical perspective, too, it has been

argued that scalar cluster validity indexes aggregate the entire information available in an input set

of data items into one or a few metrics and that invaluable information is lost in this process. In

the words of the authors of [243], “scalar measures of cluster validity are famously unreliable”. The

reader is referred to [244] for a review of after-the-fact approaches to cluster validity assessment

and to [245, 47, 246, 247, 22] for a few representative techniques.

Nevertheless, in comparison between before-the-fact techniques, which estimate the “correct”

number of clusters, and after-the-fact approaches, which validate one or a set of clusters, practical

implications lean towards the former. In effect, one is inclined, if possible, to execute the clustering

process with the proper settings, as opposed to moving ahead with some settings when there is the

likelihood that the results are likely to need to be discarded. That situation is most drastic when

it is suggested that the clustering algorithm is to be executed for a range of number of clusters in
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order for the most optimal solution to be picked later.

The findings regarding the inherent deficiencies of scalar clustering validity indexes have en-

couraged the community to investigate alternative techniques which visualize [248, 249] or as-

sess [250, 193] the inherent structure of a given set of data items from the vantage point of cluster-

ing. It is important to emphasize that some of those techniques utilize generic statistical methods

and are sometimes expensive to carry out or require marginal probability distributions which are

hard or impossible to generate in practical settings.

Visual Assessment of clustering Tendency (VAT) [85] utilizes the pairwise dissimilarity informa-

tion between data items as a symmetrical matrix with non-negative elements and zero diagonals.

We address this matrix as the Dissimilarity Matrix (DM) (this matrix has also been called the

Dissimilarity Image (DI)). VAT provides a mechanism for reordering the rows and columns of this

matrix in a way that signifies the structure in the data. In short, when VAT is successful, dense

areas in the dataset yield dark squares along the diagonal of the Reordered Dissimilarity Matrix

(RDM). One can, therefore, at least theoretically, count these squares and generate a reasonable

estimate of the number of clusters present in the data. We note that VAT must be reviewed in

the context of other visualization techniques such as trees, dendrograms, castles, and icicles [251].

More specifically, VAT belongs to the subset of techniques which utilize image-based visualiza-

tions [252, 253].

An implementation of the core technique of VAT can be found in [254] (for details refer to [255]).

The VAT reordering algorithm is based on Prim’s algorithm [256] for finding the MST corresponding

to a weighted graph (also see [257]). Nevertheless, the intent of VAT is not to generate the tree,

but to produce the order in which the vertexes are added as the tree grows. Enhanced VAT (E-

VAT) [258] is a variant of VAT which applies a robust loss function on the DM before the reordering

process begins in order to limit the impact of the outliers. E-VAT uses Otsu’s threshold [259] for

the elements of the DM as scale.

The roots of VAT can be traced back to the method known as SHADE [260] (also see [261]).

SHADE uses over-striking of printed characters in order to generate a halftone display. Aside from

this visualization technique, which is a direct product of the display technologies available at the

time of the publication of that paper, SHADE is different from VAT in that it is essentially a cluster

visualization method which is utilized after another hierarchical clustering scheme is applied on the

data. Additionally, SHADE only generates the lower triangular section of the DM. A variant of

SHADE, addressed as the “graphical method of shading” [262], performs quantization of the DM
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prior to rearrangement. VAT is also related to the Single Linkage (SL) [263] algorithm. SL, in

essence, cuts the largest edges in the MST, thus producing subsets of the data, each of which

corresponds to an individual cluster. The reader is referred to [264] for a review of the different

variations of SL algorithms and to [265] for a review of the “direct relation” [265] between the

clusters generated by SL and the reordering prescribed by VAT. The reader is also referred to [266]

for a list of practical utilizations of SL as well as a list of clustering algorithms which utilize SL.

Nevertheless, it has been argued that SL “famously” [267] fails for some cluster types [21]. Moreover,

it has been suggested that the technique of using a shaded matrix for assessing the structure of the

data generates a “visual puzzle” which is a “crypto-graphical mystery” [251, 268].

In a broader perspective, the core concept of VAT has been known for many decades and has

been utilized in many different contexts. For two examples, the reader is referred to GENLAB [269]

and Homogeneity Map [270, 271]. The former is an online tool for visualizing arbitrary DMs and

the latter seeks temporal homogeneity in fMRI data. In effect, VAT belongs to the general category

known as Cluster Heat Maps [272]. In that paper [272], the authors find traces of the utilization

of the display mechanism employed by VAT in late 19th century [273, 274] and a diverse presence

in the statistical literature in the 20th century [275]. The reader is referred to [272] for a long list

of related references. In fact, Cluster Heat Map techniques are suggested to be “by far the most

popular graphical representation” [276]. Moreover, Seriation approaches are among the well-known

methods which reorder data items based on some notion of dissimilarity. The reader is referred

to [277] for a list of loss functions used in the context of seriation and [278] for a comprehensive

review of different Dissimilarity Plots.

While VAT-style algorithms utilize symmetrical square dissimilarity matrices, there are appli-

cations in which the rows and the columns of the DM refer to different mathematical objects. An

extension of VAT, nicknamed coVAT [279], has been developed for this category of problems. co-

VAT essentially treats the rectangular DM as the known section of a larger square DM and then

imputes the missing values using a transitive logic. That technique is extended in further works,

including Scalable co-VAT (scoVAT) [280], coVAT2 [281] and Improved co-VAT (co-iVAT) [87].

Review of the artificial samples utilized in a number of works which involve VAT (see for exam-

ple [85, 243, 267, 282]) indicates that there are no outliers in these sets of input data items. In fact,

VAT is fundamentally based on the assumption that the input set of data items is composed of a

number of compact well-separated isotropic clusters. As stated by the authors of [86], VAT is “usu-

ally only effective at highlighting cluster tendency in data sets that contain compact well-separated
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clusters”. However, as also highlighted by the authors of the same paper, “[m]any practical ap-

plications involve data sets with highly irregular structure, which invalidate this assumption” [86].

We argue that the need for working with what is sometimes called “irregular geometries” [86] or

“composite shape(s)” [283] is an important practical requirement. In fact, we suggest that what

is often addressed as “tough cases” [87] is in fact the situation that needs to be addressed by a

clustering algorithm. These are cases, for which, in words of the authors of [87], “VAT fails to

accurately show the cluster tendency”.

Another one of the many successors of VAT is the Visual Cluster Validity (VCV) approach

outlined in [243]. In fact, VCV inherits from and build upon both SHADE and VAT and contributes

to them the utilization of a generic cluster model. This is as opposed to the assumption by VAT

that a cluster can be represented by a typical data item. Nevertheless, VCV, like SHADE, is

a tool which displays the clusters that have been produced by another “outsourced” clustering

algorithm. In other words, VCV transforms clusters, that are potentially defined in a hyper-

dimensional geometry, into representations which can be visualized using a 2D matrix. Nevertheless,

the way VCV approaches this capability is through cluster-to-cluster comparison, which is carried

out based on the Euclidean distance between the parameters which define the cluster model. Hence,

for example, in the context of an ellipsoidal geometry, VCV will combine the components of the

mean vector with the elements of the covariance matrix. We argue that this approach mixes into a

pot elements which not only accept values at very different scales, but also, and more importantly,

are different from a theoretical perspective. Visual Cluster Validity (VCV2) [284] is a similar

approach which uses image matching in order to compare cluster representations with the RDM.

Nevertheless, VCV utilizes the context of the data items when it estimates the dissimilarity

between a pair of data items. In order to do so, VCV models the dissimilarity between two data

items as the minimum of their common distance to a set of clusters. This process provides an

important contribution over the simplified models which utilize explicit data item-to-data item

distances as their level of dissimilarity, as, for example, is carried out by VAT and a majority of its

variants. However, assessment of the performance of VCV for Euclidean and linear clusters in R
2

in [243] shows that the results corresponding to linear clusters “are not nearly as clean as” [243]

those for Euclidean clusters. Additionally, VCV employs an overestimated number of clusters in

order to recognize the structure of the data and “some deterioration” [243] is observed when the

clustering algorithms is executed using cluster counts which are “large” [243]. We note that the

problem classes utilized in [243] are the equivalents of the 2de and 2dl models employed in this
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paper. We also emphasize that the sets of data items which are utilized in [243] appear to not

contain outlier data items.

Revised VAT (reVAT) [285] replaces the RDM with a set of profile graphs. That technique

allows for removing data items which appear to be highly likely to belong to the same cluster from

the pool of data and has been called “quasi-ordering” as well. That naming convention is in contrast

with the full reordering carried out in VAT. Nevertheless, the output of reVAT is of a different form,

compared to VAT, and, therefore, as stated by the developers of reVAT, “interpretation of the set

of reVAT profile graphs becomes very difficult when the number of clusters is large, or there is

significant overlap between groups of objects in the data” [267]. In fact, it has been argued [267]

that reVAT is applicable when C ≤ 5. This deficiency is alleviated in bigVAT [267], in which

the visual form of the VAT output is re-instituted, but the DM is confined to samples which are

proportionally selected from the dominant reVAT profiles.

Another sequel to VAT is Scalable VAT (sVAT) [282]. The development of sVAT is the result of

the realization that although bigVAT produces a 2D visualization, but that “this image may not be

as descriptive as a VAT-ordered image” [282]. Nevertheless, sVAT, too, performs sampling on the

data in order to achieve a lower computational complexity. In a similar fashion to bigVAT, sVAT

also utilizes an estimate of the clusters present in the input set of data items in order to produce

a representative subset. However, in addition to the requirement that the full DM is provided

by the user, sVAT relies on the user for providing the “desired (approximate) sample size” and

an “overestimate of the true number of clusters”. An extension of sVAT, nicknamed sVAT-SL, in

which SL stands for Single Linkage, is suggested in [286]. sVAT-SL attempts to produce both the

cluster representations as well as C. Nevertheless, sVAT-SL is in fact interrupted at the middle

of the process, because “the user must choose the number of clusters ... to seek” [286]. In other

words, the user of sVAT-SL is requested to observe the RDM and to decide what C ought to be.

Nevertheless, while sVAT-SL is advertised as “an approximation to single-linkage clustering for big

data” [286], the same paper also asserts that the clustering results generated by sVAT-SL “can be

ruined by outliers” [286].

It has been argued that “a major limitation” [287] of VAT and its variants is their “inability

to highlight cluster structure ... when ... [the data] contains clusters with highly complex struc-

ture” [287]. Spectral VAT (SpecVAT) [287] attempts to increase the legibility of the RDM generated

by VAT algorithms through spectral decomposition of the DM prior to the reordering [288]. How-

ever, the performance of SpecVAT depends on the proper selection of the parameter k, i.e. the
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number of eigenvectors used during decomposition. In fact, as demonstrated in [86], to properly

select k, one ought to have a proper estimate for C, the number of clusters present in the data.

The critical necessity for the existence of this a priori piece of information violates the premise

behind VAT and SpecVAT. The reader is referred to [289] for a review of spectral clustering and

to [290] for multiple variants of the SpecVAT scheme. The latter work utilizes image processing

techniques on the RDM and employs a sampling framework in order to reduce the computational

complexity of the resulting algorithm. It also attempts several ideas for estimating the parameters

which govern the process in order to resolve some of the concerns with the original SpecVAT. The

user is also referred to the graph-based variant of E-VAT, Graph-based E-VAT (GE-VAT) [291].

In spite of their differences, VAT, reVAT, bigVAT, sVAT, and many other algorithms in their

class, are in fact visual assessment methods. In other words, these techniques are inherently reliant

on the subjective [267] understanding of the user. This issue becomes more disconcerting when it

is argued that in some practical settings, an “experienced user” [267] may have to be employed in

order to perform the assessment (the reader is referred to [283] for related remarks). In fact, it has

been argued that non-Euclidean geometries or overlap between clusters can give rise to VAT images

for which “different viewers may deduce different numbers of clusters ..., or worse, not be able to

estimate c at all” [86]. To make matters more complicated, the output of many of the algorithms in

this class is a two dimensional image, which requires to be transferred and displayed diligently and

it is argued that compression, down-scaling, and interleaving of this image “may obscure important

information about potential clusters in the data” [267].

Another important detail about VAT and a majority of its affiliates is their treatment of the

MST. In fact, in many of the algorithms in this category, the MST is in essence considered as a

by-product which is discarded as soon as it is created. We argue, however, that this representation

carries very important information about the structure of the data and the relationship between the

clusters present in it. As will be shown later in this paper, we argue that the RDM is an alternative,

and less useful, representation than the MST. Nevertheless, significant effort has been spent in the

literature on the interpretation of the structure of the data based on the appearance of the RDM.

Cluster Count Extraction (CCE) [292] is one such approach, which assesses the histogram of the

DM using image processing operators such as Otsu’s algorithm [259] and Fast Fourier Transform

(FFT). CCE requires the proper adjustment of multiple threshold and filter radius parameters.

Dark Block Extraction (DBE) [293] is another approach which counts the number of dark diagonal

blocks in the RDM using thresholding and morphological operations. DBE also requires the diligent
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adjustment of the threshold value used for determining the peaks of a histogram. Enhanced DBE

(E-DBE) [291] incorporates a robust loss function with BDE. aVAT [86] is another approach which

utilizes image processing techniques in order to interpret the RDM. That paper applies a function,

which can be considered a robust loss function, on the RDM in order to increase its contrast and

to facilitate the recognition process. The reader is also referred to [294] in which Dunn’s cluster

validity index is used in order to perform thresholding on the RDM. Other validity indexes, such

as the PBM index [240], have been used for interpreting the RDM as well. Variable string length

Genetic Algorithm (VGA) [295, 296] is another approach employed in order to extract the number

of clusters from the RDM (also see [297]). Clustering in Ordered Dissimilarity Data (CLODD) [298]

attempts to automatically produce the clusters from the RDM as well. While it is advertised that

“when [the input data] has “good” clusters, CLODD will find them”, the performance of CLODD

depends on the values of the two “influence constant”s α and γ, the values of which are set using

trial and error [298].

It is important to emphasize that, independent of the actual efficacy of the available approaches

which utilize image processing tools in order to interpret the RDM, those techniques are in essence

based on the assumption that the RDM is the representation to be processed and that the MST is

inferior to it. This is evident in the concluding statement in [86], in which the authors advocate

for the use of more efficient thresholding techniques [299] in order to enhance the interpretation of

the RDM. We argue, however, that a more important consideration in this discussion is the choice

of representations, and that the MST is a more informative representation than the RDM.

For an input set of data items X, which contains N data items, the computational complexity

of VAT is of O(N2). This is due to the fact that VAT processes the N ×N matrix of dissimilarities

between the data items. In addition to the fact that this model is inappropriate in the context

of a generic notion of homogeneity, the quadratic complexity of VAT is prohibitive for Big Data

problem instances. In fact, it has been argued that VAT “works well for relatively small data sets

(n ≤ 500)” [267]. Hence, variations of VAT have been proposed which address this issue. reVAT,

bigVAT, and sVAT are three approaches which aim at lowering the computational complexity to

O(CN). Here, C is the inherent, and unknown, number of clusters which are present in X. As

commonly C ≪ N , this transformation is greatly beneficial. Nevertheless, it has been argued that

“sVAT does not asymptotically scale linearly with [the number of data items]” [286].

The O(N2) computational complexity of VAT contains the superpositions of the costs associated

with two processes, both of which require O(N2) operations. In fact, not only the DM needs to be
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reordered at the cost of O(N2) operations, but also this matrix needs to be calculated in the first

place, and the computational complexity of that process is of O(N2) as well. In this context, the

sequels of VAT, i.e. reVAT, bigVAT, and sVAT, drop the complexity of the reordering mechanism to

O(CN), but, nevertheless, they still require the calculation of the N ×N DM. Hence, technically,

the computational complexities of these algorithms are still O(N2), unless the DM is provided

a priori. As will be discussed next, that circumstance is only applicable to a small subset of

clustering problems, in which case, too, the DM must be calculated in many practical settings

anyways. Hence, neither VAT nor the aforementioned variants of it are genuinely scalable. Here,

we rely on the notion of scalability which mandates that the computational complexity of the

algorithm must grow linearly as the number of input data items increases [300].

Nevertheless, a critical concern with VAT, and other models in its category, is in their core

assumption about the nature of the inter-relationship between the data items. In fact, VAT is

confined to situations in which it is meaningful to discuss the similarity/dissimilarity of two data

items in vacuum. In this context, VAT makes the extremely limiting assumption that the data

items are either given as object vectors or by numerical pairwise dissimilarity values [85]. Hence,

VAT assumes that given the two data items x1 and x2, one can meaningfully point out the extent

to which the two are likely to belong to the same cluster. This assumption is valid within the

context of the Euclidean distance function as well as other ℓk norms in which case the clusters are

in essence prototypical data items (the reader is referred to classical reviews of data item-to-data

item distance metrics in [301, 302]).

In fact, in the literature, the input set of data items has been, incorrectly in our opinion,

reduced to and assumed to be equivalent to its relational representation (for recent examples refer

to [265, 86]). This limited scope is more obvious in the case of algorithms such as Relational

Visual Cluster Validity (RVCV) [303] and Correlation Cluster Validity (CCV) [304], which explicitly

identify their narrow scope. While that situation is applicable to relational and prototype-based

clustering problem classes, it is not necessarily an inclusive framework. We argue that the notion

of “dissimilarity between two data items” may not be meaningful for many problem classes which

are highly relevant in practice, unless a context is defined. In other words, the question is not how

dissimilar the two data items x1 and x2 are. One example to illuminate this point is clustering

members of a given R
k into lower dimensional spaces. Under this regime, if data items are to be

clustered into lines, planes, and hyperplanes, for example, the question of dissimilarity between

two data items is meaningless unless one also provides a cluster representation. In other words,
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any pair of data items x1 and x2 may be extremely similar or inherently dissimilar given their

mutual relationship to the cluster which provides the context. Hence, we argue, the square DM

representation is only applicable to a small subset of possible problem classes. The reader is referred

to SpecVAT [287], as only one example of, the “natural” and implicit reduction of a set of data

items to its relational representation.

VAT approaches have been augmented with path-based distance models in order to alleviate

the limiting scope mandated by the assumption of the relational model. For example, Improved

VAT (iVAT) [86] prescribes that it is not the direct data item-to-data item distance which must

be stated in the DM but that x1 and x2 are “similar” if there is a sequence of data items, with x1

and x2 at the two ends of the sequence, each of which are at close distances to each other [305].

Sample experimental results provided in [86] suggests that iVAT is capable of recognizing arbitrary

sequences of data items in R
2. The authors of that paper also propose the Automatic VAT (aVAT)

technique which applies a function, that can be considered a robust loss function, on the RDM in

order to facilitate the semi-unsupervised extraction of the diagonal blocks from it. The reader is

also referred to a variant of the iVAT algorithm, nicknamed Efficient iVAT (efiVAT), which utilizes

dynamic programming [87]. A related algorithm, named clusiVAT [266], samples the input set of

data items in order to generate the cluster representations using SL. clusiVAT then extends the

classification results to the entire set of data items. The reader is referred to [306] for variants of

clusiVAT and iVAT, nicknamed clusiVAT+ and iVAT+, which utilize additional “efficient thresh-

olding schemes”. While these contributions provide some relief, especially when the clusters are

isolated and separated, the core problem is still far from being addressed by these techniques. One

scenario in which the path-based model falls short of resolving the challenge is the clustering of

members of Rk into lower-dimensional spaces. In this scenario, any intersection between a pair of

clusters is a real threat that may cause the two clusters to “leak” into each other. This case is closely

related to the “zigzagging” phenomenon which the original implementation of VAT was prone to

and was alleviated using a clever initialization procedure for the reordering mechanism [85].

Moreover, even the mere assumption that the data items can necessarily be reduced to members

of Rk is in essence a dangerous reduction. As will be shown later in this paper, the data items

merely need to be mathematical objects for which distance to a given cluster can be defined. This

is a major step forward compared to the majority of the works in the VAT literature, where the

assumption that xn ∈ R
k is made out of convenience, without any reference to the implications of

that reduction.
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There is a significant overlap between the group of individuals who worked on VAT and Fuzzy

C-Means (FCM) [20]. While, historically, FCM precedes VAT, VAT is in fact an attempt to set

one of the key inputs required by FCM, i.e. the value of C. Additionally, as stated above, there

have been multiple attempt to forge VAT into an alternative to FCM, i.e. to generate the cluster

representations, and not just their count, by VAT. This convoluted relationship between VAT and

FCM, however, to the best of our knowledge, has never led to a marriage of the two ideas. In other

words, VAT either feeds into FCM or replaces it, but never intertwines with it. In this paper, we

take up this task and demonstrate that a robustified variant of FCM, nicknamed Connie [127],

can be used as a single-cluster clustering mechanism, i.e. by assuming C = 1, in order to scan the

cluster space and to produce cluster representations which are aggregated using a VAT reordering

process in order to produce a MST, the sub-trees of which yield the sought for clusters in the input

set of data items.



Chapter 9

Other

Not cited here [307, 308, 309, 310, 311, 312, 313, 314, 315].
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